Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm của AB
N là trung điểm của CE
Do đó:AEBC là hình bình hành
SUy ra: AE//BC và AE=BC
=>AE=AD
Ta có: AE//BC
AD//BC
mà AE,AD có điểm chung là A
nên A,E,D thẳng hàng
mà AD=AE
nên A là trung điểm của DE
a: Sửa đề: ΔABC cân tại A
Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Xét ΔACB có
BM,Cn là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
mà BM=CN
nên BG=CG
b: BG=2/3BM
=>BG=2GM
=>BG=GD
=>G là trung điểm của BD và BD=2BG
CG=2/3CN
=>CG=2GN
=>CG=GE
=>G là trung điểm của CE và CE=2CG
CE=2CG
BD=2BG
mà CG=BG
nên CE=BD
Xét tứ giác BCDE có
G là trung điểm chung của BD và CE
CE=BD
=>BCDE là hình chữ nhật
a) Xét ΔAME và ΔCMB có
MA=MC(gt)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
Suy ra: AE=CB(hai cạnh tương ứng)(1)
Xét ΔANF và ΔBNC có
NA=NB(gt)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
Suy ra: AF=BC(Hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AE=AF(đpcm)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{MAE}=\widehat{MCB}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: AE//BC(cmt)
mà AF//BC(cmt)
và AE,AF có điểm chung là A
nên A,E,F thẳng hàng(đpcm)
a) Tính MN:
Xét tam giác ABC ta có:
M là trung điểm AC (gt); N là trung điểm BC (gt)
=>MN là đường trung bình của tam giác ABC
=> MN // BC; MN=BC/2
=>MN= 12/2=6
b) Tính diện tích tam giác ABC:
Xét tam giác ABC vuông tại A ta có:
AB2+AC2=BC2 (định lý Pytagor thuận)
122+AC2=202
144+AC2=400
AC2=400-144=256
AC=16
Diện tích tam giác ABC là:
S tam giác ABC= AB*AC=12*16=192
c) CMR: tứ giác ABCD là hình bình hành:
Xét tứ giác ABCD ta có:
M là trung điểm của AC (gt)
M là trung điểm của BD (gt)
AC cắt BD tại M
=> tứ giác ABCD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
d) CM: tứ giác ABEC là hình chữ nhật:
Ta có :
CD=AB ( ABCD là hình bình hành)
CD=CE (gt)
=>CE=AB
Xét tứ giác ABEC ta có:
AB=CE (cmt)
AB//CE (AB//CD; C thuộc DE)
=>tứ giác ABEC là hình bình hành ( tứ giác có một cặp cạnh đối vừa song song vừa bằng nhau)
mà góc BAC= 900 (tam giác ABC vuông tại A)
=.>hình bình hành ABEC là hình chữ nhật (tứ giác là hình bình hành có một góc vuông)
a) *Xét △ABC, ta có:
M là trung điểm AC (AM = MC, BM là đường trung tuyến)
N là trung điểm AB (AN = NB, CN là đường trung tuyến)
⇒ NM = \(\dfrac{1}{2}\)BC và NM // BC
⇒ BNMC là hình thang.
*Xét hình thang BNMC, ta có:
\(\widehat{B}\) = \(\widehat{C}\) (△ABC cân tại A)
Vậy BNMC là hình thang cân.
b) Xét tứ giác BKAG, ta có:
AN = NB (CN là đường trung tuyến)
KN = NG (N là trung điểm GK)
Vậy tứ giác BKAG là hình bình hành.
Xét \(\Delta AMK=\Delta CMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{K_1}=\widehat{B_1}\)
Mà 2 góc ở vị trí so le trong
\(\Rightarrow AK\)// \(BC\)( 1 )
Và AK = BC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow ABCK\)là hình bình hành ( đpcm )
b, Bạn xem lại đề bài