Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔAHB vuông tại H
=>AH<AB
ΔAHC vuông tại H
=>AH<AC
=>AH+AH<AB+AC
=>2AH<AB+AC
=>\(AH< \dfrac{1}{2}\left(AB+AC\right)\)
b: Xét ΔABC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2GM và CG=2GN
=>BG=GE và CG=GF
=>G là trung điểm của BE và G là trung điểm của CF
Xét tứ giác BFEC có
G là trung điểm chung của BE và CF
=>BFEC là hình bình hành
=>EF=BC
a: Sửa đề: ΔABC cân tại A
Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Xét ΔACB có
BM,Cn là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
mà BM=CN
nên BG=CG
b: BG=2/3BM
=>BG=2GM
=>BG=GD
=>G là trung điểm của BD và BD=2BG
CG=2/3CN
=>CG=2GN
=>CG=GE
=>G là trung điểm của CE và CE=2CG
CE=2CG
BD=2BG
mà CG=BG
nên CE=BD
Xét tứ giác BCDE có
G là trung điểm chung của BD và CE
CE=BD
=>BCDE là hình chữ nhật
a:Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm của AB
N là trung điểm của CE
Do đó:AEBC là hình bình hành
SUy ra: AE//BC và AE=BC
=>AE=AD
Ta có: AE//BC
AD//BC
mà AE,AD có điểm chung là A
nên A,E,D thẳng hàng
mà AD=AE
nên A là trung điểm của DE
a) Xét tam giác ABC và tam giác AEF có:
AB = AE (gt).
AC = AF (gt).
^BAC = ^EAF (2 góc đối đỉnh).
=> Tam giác ABC = Tam giác AEF (c - g - c).
b) Tam giác ABC = Tam giác AEF (cmt).
=> ^ABC = ^AEF (2 góc tương ứng).
Mà 2 góc này ở vị trí so le trong.
=> BC // EF (dhnb).
Chúc bạn học tốt!
a: Xét ΔMDB và ΔMEF có
MD=ME
góc DMB=góc EMF
MB=MF
=>ΔMDB=ΔMEF
b: ΔMDB=ΔMEF
=>DB=EF
=>EC=EF
=>ΔECF cân tại E
a) Xét ΔAME và ΔCMB có
MA=MC(gt)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
Suy ra: AE=CB(hai cạnh tương ứng)(1)
Xét ΔANF và ΔBNC có
NA=NB(gt)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
Suy ra: AF=BC(Hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AE=AF(đpcm)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{MAE}=\widehat{MCB}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà hai góc này là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: AE//BC(cmt)
mà AF//BC(cmt)
và AE,AF có điểm chung là A
nên A,E,F thẳng hàng(đpcm)