K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2018

@Nhã Doanh

15 tháng 12 2022

Bài 1:

Xét ΔABC có CA^2=AB^2+BC^2

nên ΔABC vuông tại B

=>góc ABC=90 độ

Xét ΔABC vuông tại B có sinC=AB/CA=3/5

nên góc C=37 độ

=>góc A=53 độ

10 tháng 1 2021

Đẳng thức cần chứng minh tương đương với:

\(\dfrac{2a+b+c}{\left(a+b\right)\left(a+c\right)}=\dfrac{3}{a+b+c}\)

\(\Leftrightarrow\left(2a+b+c\right)\left(a+b+c\right)=3\left(a^2+ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+b^2+c^2+3ab+3ac+2bc=3a^2+3ab+3bc+3ca\)

\(\Leftrightarrow a^2=b^2+c^2-bc\).

Đây chính là định lý hàm cos cho tam giác ABC có \(\widehat{A}=60^o\).

(Phần chứng minh bạn có thể xem ở Cho tam giác ABC có Â=60 độ. Chứng minh rằng BC^2=AB^2 AC^2-AB.BC - Hoc24)

29 tháng 10 2021

a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)

\(BC=MH+HP=10\)

Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)

b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)

\(EF=EQ+QF=17\)

Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)

  

Câu a : Câu hỏi của Nguyễn Thị Mỹ Lệ - Toán lớp 9 | Học trực tuyến

Khi đã chứng minh : \(a^2=b^2+c^2-2bc.cosA\)

\(\Rightarrow a^2=b^2+c^2-2bc.cos60\)

\(\Rightarrow a^2=b^2+c^2-bc\left(đpcm\right)\)

9 tháng 2 2019

Cho mình hỏi, làm sao để tag đường link câu hỏi vậy?

9 tháng 3 2019

Bài này dễ thôi em :) A B C x y z 1 1 1 2 2 2

Ta có: \(\sin C_1=\frac{x}{R};\sin C_2=\frac{y}{R};\sin B_1=\frac{x}{R};\sin B_2=\frac{z}{R};\sin A_1=\frac{y}{R};\sin A_2=\frac{z}{R}\)

khi đó \(\frac{2\left(x+y+z\right)}{R}=sinA_1+sinA_2+sinB_1+sinB_2+sinC_1+siCA_2\)

Xét \(f\left(a\right)=sina\rightarrow f''\left(a\right)=-sina< 0\) là hãm lõm nên ta áp dụng BDT Jensen:

\(sinA_1+sinA_2+sinB_1+sinB_2+sinC_1+siCA_2\le6sin\left(\frac{A+B+C}{6}\right)=6sin\left(\frac{180}{6}\right)=3\)

\(\Rightarrow\frac{2\left(x+y+z\right)}{R}\le3\Leftrightarrow x+y+z\le\frac{3R}{2}\)

Lại theo BĐT C-S: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\cdot\left(x+y+z\right)}=\sqrt{3\cdot\frac{3R}{2}}=3\sqrt{\frac{R}{2}}\)

9 tháng 3 2019

đạo hàm cấp 2 đó em <(")