Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(AB^2+AC^2=8^2+15^2=289=17^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A.
Ta có: \(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.BC.AH\)
\(\Leftrightarrow BC.AH=AB.AC=8.15=120\)
\(\Leftrightarrow AH=\dfrac{120}{BC}=\dfrac{120}{17}\)
Xét \(\Delta AHC\) vuông tại H có:
\(HC^2=AC^2-AH^2=15^2-\dfrac{120^2}{17^2}=\dfrac{50625}{289}\)
\(\Rightarrow HC=\dfrac{225}{17}\)
a) Xét \(\Delta ABC\) vuông tại A
\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{}\Rightarrow AB=6cm\)
b) Xét \(\Delta ABM\) và \(\Delta CDM\) có:
\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)
\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)
\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)
c) Có : BC + DC > BD
mà BM = 2 BD ; DC = AB
\(\Rightarrow\) DC + BC > 2BM
a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100
=>BC=10
b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C )
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )
c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC
=> DE đi qua trung điểm BC
Bạn tự vẽ hình nha
a) Vì AB = AC
\(\Rightarrow\) \(\Delta ABC\) cân tại A
\(\Rightarrow\) \(\widehat{B}=\widehat{C}\) (Hai góc kề một đáy)
Xét hai tam giác vuông \(\Delta BMH\) và \(\Delta CMK\) , ta có:
\(\widehat{B}=\widehat{C}\) ( Chứng minh trên)
\(MB=MC\) (M là trung điểm của BC)
\(\Rightarrow\Delta BMH=\Delta CMK\) (cạnh huyền góc nhọn)
b) Tự làm
#)Giải :
a) Áp dụng định lí py - ta - go :
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=10^2-8^2=36\Rightarrow AC=\sqrt{36}=6\)
b) Dễ c/m \(\Delta ABC=\Delta ABD\left(c.g.c\right)\)
\(\Rightarrow BD=BC\) (cặp cạnh t/ứng = nhau)
\(\Rightarrow\Delta BDC\) cân tại B
A C B D E M
Giải: a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AC2 = BC2 - AB2 = 102 - 82 = 100 - 64 = 36
=> AC = 6
b) Xét t/giác ABC và t/giác ABD
có: AB : chung
\(\widehat{BAC}=\widehat{BAD}=90^0\) (gt)
AC = AD (gt)
=> t/giác ABC = t/giác ABD (c.g.c)
=> BC = BD (2 cạnh t/ứng)
=> t/giác BDC cân tại B
c) Ta có: AM // BD => \(\widehat{D}=\widehat{MAC}\)(đồng vị)
mà \(\widehat{D}=\widehat{C}\)(vì t/giác ABC = t/giác ABD)
=> \(\widehat{MAC}=\widehat{C}\) => t/giác MAC cân tại M => MA = MC (1)
AM // BD => \(\widehat{DBA}=\widehat{BAM}\)(so le trong)
mà \(\widehat{DBA}=\widehat{ABM}\) (vì t/giác ABC = t/giác ABD)
=> \(\widehat{BAM}=\widehat{ABM}\) => t/giác ABM cân tại M => BM = AM (2)
Từ (1) và (2) => BM = CM
d) Xét t/giác AMB và t/giác EMC
có: AM = ME (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
BM = CM (cmt)
=> t/giác AMB = t/giác EMC (c.g.c)
=> \(\widehat{BAM}=\widehat{MEC}\) (2 góc t/ứng)
Tương tự, xét t/giác BME và t/giác CMA
=> t/giác BME = t/giác CMA (c.g.c)
=> \(\widehat{BEM}=\widehat{MAC}\) (2 góc t/ứng)
Ta có: \(\widehat{BAM}+\widehat{MAC}=90^0\) (phụ nhau)
=> \(\widehat{CEM}+\widehat{BEM}=90^0\)
=> \(\widehat{BEC}=90^0\)
\(AB^2+BC^2=8^2+15^2=64+225=289\)
\(AC^2=17^2=289\)
\(\Rightarrow AB^2+BC^2=AC^2\Rightarrow\Delta ABC\) vuông tại B