\(\Delta ABC\) vuông tại A, đường cao AH, AB = 20cm, HC = 9cm. Tính độ dài AH và BC.<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

Áp dụng hệ thực giữa cạnh và đường cao trong tam giác vuông có:

\(AH^2=AB.BH\)

\(\Leftrightarrow20^2=BH\left(BH+9\right)\)

\(\Leftrightarrow BH^2+94H-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

Lại có: \(BC=BH+HC=16+9=25\left(cm\right)\)

\(\Rightarrow AH^2=BH.CH=16.9=12^2\)

\(\Rightarrow AH=12\left(cm\right)\)

Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có: 
AB^2=BH.BC 
<=>20^2=BH.(BH + 9) 
<=>BH^2 + 9BH-400=0 
=> BH=16cm 
Mà BC=BH + HC=16 + 9=25cm 
AH^2 = BH.HC = 16.9 = 12^2 
suy ra AH = 12cm.

Vậy AH=12cm.

16 tháng 6 2019

\(AB^2=BH.BC=BH\left(BH+HC\right)\)\(\Leftrightarrow20^2=BH^2+9BH\Leftrightarrow BH^2+9BH-400=0\)

\(\Leftrightarrow BH=16cm\)

\(\Rightarrow BC=HC+HB=9+16=25cm\)

\(\Rightarrow AH^2=HB.HC\Leftrightarrow AH=\sqrt{HB.HC}=12cm\)

3 tháng 9 2016

Áp dụng hệ thực giữa cạnh và đường cao trong tam giác vuông có:

\(AH^2=AB.BH\)

\(\Leftrightarrow20^2=BH\left(BH+9\right)\)

\(\Leftrightarrow BH^2+94H-400=0\)

\(\Rightarrow BH=16\left(cm\right)\)

Lại có: \(BC=BH+HC=16+9=25\left(cm\right)\)

\(\Rightarrow AH^2=BH.CH=16.9=12^2\)

\(\Rightarrow AH=12\left(cm\right)\)

3 tháng 9 2016

  Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có: 
AB^2=BH.BC 
<=>20^2=BH.(BH + 9) 
<=>BH^2 + 9BH-400=0 
=> BH=16cm 
Mà BC=BH + HC=16 + 9=25cm 
AH^2 = BH.HC = 16.9 = 12^2 
suy ra AH = 12cm.

Vậy AH=12cm.

24 tháng 5 2016

Đó là bài lớp 9 à lớp 7 thì có

24 tháng 5 2016

Gọi AC=a;BH=b

thì ta có hệ pt \(\sqrt{a^2+20^2}=9+b\)(pytago)

\(\frac{20a}{b+9}=\sqrt{9b}\)(hệ thức lượng trong tam giác vuông)

 Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)

16 tháng 7 2021

25/13 nha

19 tháng 8 2016

C A B H 2 8

Áp dụng hệ thức liên quan tới đường cao ta có :

  \(AH^2=BH.CH=2.8=16\)

\(\Rightarrow AH=4cm\)

19 tháng 8 2016

Áp dụng công thức \(AH^2=BH.CH\) (hệ thức về cạnh trong tam giác vuông)

Được : \(AH^2=8.2=16\Rightarrow AH=4\) (cm)

7 tháng 10 2020

Hình bạn tự vẽ

Ta có: \(\frac{HB}{HC}=\frac{1}{4}\Leftrightarrow HC=4HB\)

Thay vào ta được: \(HB+HC=BC\)

\(\Leftrightarrow HB+4HB=15\)

\(\Leftrightarrow5HB=15\)

\(\Rightarrow HB=3\left(cm\right)\)

\(\Rightarrow HC=4\cdot3=12\left(cm\right)\)

Từ đó ta dễ dàng tính được: \(AH^2=BH\cdot HC=3\cdot12=36\)

\(\Rightarrow AH=6\left(cm\right)\)

Vậy AH = 6cm

7 tháng 10 2020

Đặt \(\frac{HB}{1}=\frac{HC}{4}\)thì HB=k, HC=4k.

Ta có: \(AH^2=HB.HC\Rightarrow14^2=4k^2\Rightarrow14=2k\Rightarrow k=7\)

Do đó: HB=7(cm) , HC= 4.7=28(cm), BC=7+28=35(cm)