Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a, xét tam giác AHB và tam giác DBH có : HB chung
góc AHB = góc HBD = 90 do AH _|_ BC (gt) và Bx _|_ BC (gt)
AH = BD (gt)
=> tam giác AHB = tam giác DBH (2cgv)
b, tam giác AHB = tam giác DBH (câu a)
=> góc DHB = góc HBA (đn) mà 2 góc này so le trong
=> HD // AB (đl_
c, câu này dễ tự tính được
GT| \(\widehat{BAC}=90\text{°}\) \(AH\perp BC\)tại H Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH \(\widehat{BAH}=35\text{°}\) |
KL | AB // DH |
Xét \(\Delta AHB\&\Delta DBH\) ta có :
AH = BD ( hình vẽ )
BH cạnh chung
AB = HD ( gt )
=> \(\Delta AHB=\Delta DBH\)( c.c.c )
b) Ta có :
\(\Delta AHB=\Delta DBH\) ( cmt )
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT
=> AB // DH
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:
\(BH:\)cạnh chung
\(AH=DB\)(gt)
Suy ra \(\Delta AHB=\)\(\Delta DBH\left(2cgv\right)\)
b) Vì \(\Delta AHB=\)\(\Delta DBH\)(c/m ở câu a) nên \(\widehat{ABH}=\widehat{DHB}\)(hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên \(AB//DH\)
c) \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=35^0\)nên \(\widehat{ABH}=90^0-35^0=55^0\)
hay \(\widehat{ABC}=55^0\)
\(\Delta ABC\)vuông tại A có \(\widehat{ABC}=55^0\)nên \(\widehat{ACB}=90^0-55^0=35^0\)
Vậy \(\widehat{ACB}=35^0\)
a)
Xét tam giác AHB và tam giác DBH có:
AH = DB (gt)
AHB = DBH (= 900)
BH chung
=> Tam giác AHB = Tam giác DBH (c.g.c)
b)
DB _I_ BC (gt)
AH _I_ BC (gt)
=> DB // AH
c)
Tam giác HAB vuông tại H có:
HAB + HBA = 900
350 + HBA = 900
HBA = 900 - 350
HBA = 550
Tam giác ABC vuông tại A có:
ABC + ACB = 900
550 + ACB = 900
ACB = 900 - 550
ACB = 350
a) Xét △BHA và △HBD có:
BHA = HBD (= 90o)
BH: chung
HA = BD (gt)
\(\Rightarrow\)△BHA = △HBD (2cgv) (*)
b) Từ (*), ta có: ABH = DHB (2 góc tương ứng)
Mà hai góc ở vị trí so le trong
\(\Rightarrow\)AB // DH
c) Ta có: BAH + HAC = 90o
\(\Rightarrow\)HAC = 90o - 35o = 55o
Xét △HAC vuông tại H
\(\Rightarrow\)HAC + HCA = 90o (tính chất hai góc phụ nhau trong △ vuông)
\(\Rightarrow\)HCA = 90o - 55o = 35o
\(\Rightarrow\)ACB = 35o
Vậy ACB = 35o
a) Xét tam giác AHB và tam giác DBH có:
AH=BD (giả thiết)
Góc AHB=góc DBH (=90o)
BH là cạnh chung
=> Tam giác AHB = tam giác DBH (c.g.c)
b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)
Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH
c) Tam giác ABH có: \(\widehat{BAH}+\widehat{AHB}+\widehat{ABH}=180^o\) (tổng 3 góc trong tam giác)
=>\(35^o+90^o+\widehat{ABH}=180^o\Rightarrow\widehat{ABH}=180^o-35^o-90^o=55^o\)
Tam giác ABC có: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^o\)(tổng 3 góc trong tam giác)
=>\(90^o+\widehat{ACB}+55^o=180^o\Rightarrow\widehat{ACB}=180^o-90^o-55^o=35^o\)
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:
AH = BD(gt)
\(\widehat{AHB}=\widehat{DBH}=90^o\left(gt\right)\)
BH là cạnh chung
\(\Rightarrow\Delta AHB=\Delta DBH\left(c.g.c\right)\)
b) Ta có: \(\Delta AHB=\Delta DBH\)(theo a)
\(\Rightarrow\widehat{ABH}=\widehat{DHB}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // DH
c) \(\Delta AHB:\widehat{AHB}=90^o\)
\(\Rightarrow\widehat{BAH}+\widehat{ABH}=90^o\)(trong tam giác vuông, 2 góc nhọn phụ nhau)
\(\Rightarrow35^o+\widehat{ABH}=90^o\)
\(\Rightarrow\widehat{ABH}=55^o\)
\(\Delta ABC:\widehat{A}=90^o\)
\(\Rightarrow\widehat{ACB}+\widehat{ABC}=90^o\)(trong tam giác vuông, 2 góc nhọn phụ nhau)
\(\Rightarrow\widehat{ACB}+55^o=90^o\)
\(\Rightarrow\widehat{ACB}=35^o\)
Mình cung dinh hoi the
a: Xét ΔAHB vuông tại H và ΔDBH vuông tại B có
BH chung
BA=HD
Do đó: ΔAHB=ΔDBH
b: Xét tứ giác AHDB có
AH//DB
AH=DB
Do đó: AHDB là hình bình hành
Suy ra: AB//DH
c: \(\widehat{ACB}=\widehat{BAH}=35^0\)