Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nhớ rằng \(\cos ^2a+\sin ^2a=1\). Ta có:
\(B=(1-\sin ^4a-\cos ^4a)(\tan ^2a+\cot ^2a+2)\)
\(=[1+2\sin ^2a\cos ^2a-(\sin^4a+\cos ^4a+2\sin ^2a\cos ^2a)](\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}+2)\)
\(=[1+2\sin ^2a\cos ^2a-(\sin ^2a+\cos ^2a)^2].\frac{\sin ^4a+\cos ^4a+2\sin ^2a\cos ^2a}{\cos ^2a\sin ^2a}\)
\(=[1+2\sin ^2a\cos ^2a-1^2].\frac{(\sin ^2a+\cos ^2a)^2}{\cos ^2a\sin ^a}\)
\(=2\sin ^2a\cos ^2a.\frac{1^2}{\cos ^2a\sin ^2a}=2\)
a) Xét tam giác ADC và tam giác BEC , có
góc C chung
góc ADC=góc CBE (=90*)
=> tam giác ADC đông dạng với tam giác BEC (g.g)
b) Xét tam giác ABK và tam giác AEK, có
góc BDK = góc AEK (=90*_
góc BKD=AKE ( đối đỉnh)
=> tam giác BDK ~ tam giác AEK (g.g)
=> BK/KD=KE/AK ( tỉ lệ đồng dạng )
=> BK.KE=AK.KD ( đpcm)
hình,
~~~
a/ A/dụng pitago vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2=5^2+12^2=169\Rightarrow BC=13\left(cm\right)\)
Xét ΔHBA và ΔABC có:
\(\left\{{}\begin{matrix}\widehat{H}=\widehat{A}=90^o\left(gt\right)\\\widehat{B}:chung\end{matrix}\right.\)
=>ΔHBA ~ ΔABC (g.g)
=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\cdot12}{13}\approx4,6\left(cm\right)\)
b/ Xét ΔABF và ΔHBE có:
\(\left\{{}\begin{matrix}\widehat{A}=\widehat{H}=90^o\left(gt\right)\\\widehat{B_1}=\widehat{B_2}\left(gt\right)\end{matrix}\right.\)
=> ΔABF ~ ΔHBE (g.g)
=> \(\widehat{F_1}=\widehat{E_2}\) (2 góc tương ứng)
mặt khác: \(\widehat{E_1}=\widehat{E_2}\)(đối đỉnh)
=> \(\widehat{F_1}=\widehat{E_1}\)
=> ΔAEF cân tại A (đpcm)
a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc C chung
Do đó: ΔACH\(\sim\)ΔBCA
b: \(BC=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=12\left(cm\right)\)
Lời giải:
Kẻ đường cao $BH$ của tam giác $ABC$.
\(S_{ABC}=\frac{BH.AC}{2}(1)\)
Theo công thức lượng giác: \(\sin A=\frac{BH}{AB}\Rightarrow BH=\sin A. AB(2)\)
Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin A. AB.AC}{2}=\frac{bc\sin \alpha}{2}\)
Hình vẽ: