Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\log_2(x+4)+2\log_4(x+2)=2\log_{\frac{1}{2}}\frac{1}{8}=6\)
\(\Leftrightarrow 2\log_4(x+4)+2\log_4(x+2)=6\)
\(\Leftrightarrow \log_4(x+4)+\log_4(x+2)=3\)
\(\Leftrightarrow \log_4[(x+2)(x+4)]=3\)
\(\Leftrightarrow (x+2)(x+4)=4^3=64\)
\(\Leftrightarrow x^2+6x-56=0\)
\(\Leftrightarrow x=-3\pm \sqrt{65}\)
Kết hợp với ĐKXĐ ta suy ra \(x=-3+\sqrt{65}\) là nghiệm của pt
bạn ơi mình hỏi tí, sao log\(^{\left(x+4\right)}_2=2log^{\left(x+4\right)}_4\)
Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó
Câu 1:
a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)
b/ \(\int\frac{1}{x.lnx}dx\)
Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)
\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)
c/ \(I=\int x.sin\frac{x}{2}dx\)
Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)
\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)
d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)
\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)
những câu tích phân như này giải tay ko hề dễ, nên mình dùng table mò ra a=13,b=18,c=78 => a+b+c=109 :v
1.\(\dfrac{log_ac}{log_{ab}c}=log_ac.log_c\left(ab\right)=log_ac.\left(log_ca+log_cb\right)=log_ac.log_ca+log_ac.log_cb=\dfrac{log_ac}{log_ac}+\dfrac{log_cb}{log_ca}=1+log_ab\)
2. \(log_{ax}bx=\dfrac{log_abx}{log_aax}=\dfrac{log_ab+log_ax}{log_aa+log_ax}=\dfrac{log_ab+log_ax}{1+log_ax}\)
3. \(\dfrac{1}{log_ax}+\dfrac{1}{log_{a^2}x}+...+\dfrac{1}{log_{a^n}x}=log_xa+log_xa^2+...+log_xa^n\)
\(=log_xa+2log_xa+...+n.log_xa=log_xa+2log_xa+...+n.log_xa\)
\(=log_xa.\left(1+2+...+n\right)=\dfrac{n\left(n+1\right)}{2}log_xa=\dfrac{n\left(n+1\right)}{2.log_ax}\)
Viết lại đề bài đi bạn, bạn nhầm đề rồi thì phải, ở \(z_1;z_2\) đầu biểu thức có gì đó ko ổn
Lời giải:
Đặt \(\log_9a=\log_{12}b=\log_{16}(a+b)=t\)
\(\left\{\begin{matrix} a=9^t\\ b=12^t\\ a+b=16^t\end{matrix}\right.\Rightarrow 9^t+12^t=16^t\)
Chia 2 vế cho \(12^t\) ta có:
\(\left(\frac{9}{12}\right)^t+1=\left(\frac{16}{12}\right)^t\)
\(\Leftrightarrow \left(\frac{3}{4}\right)^t+1=\left(\frac{4}{3}\right)^t\) (1)
Đặt \(\frac{a}{b}=\left(\frac{9}{12}\right)^t=\left(\frac{3}{4}\right)^t=k\). Thay vào (1):
\(k+1=\frac{1}{k}\Leftrightarrow k^2+k-1=0\)
\(\Leftrightarrow \frac{a}{b}=k=\frac{-1+ \sqrt{5}}{2}\) (do \(k>0\) nên loại TH \(k=\frac{-1-\sqrt{5}}{2}\) )
Thấy \(\frac{-1+\sqrt{5}}{2}\in (0;\frac{2}{3})\) nên chọn đáp án b
thay \(n=5\)vào phương trình trên => \(log_3\left(2u_5-63\right)=2log_4\left(u_5-32\right)=t\) => \(\left\{{}\begin{matrix}2u_5-63=3^t\\u_5-32=2^t\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2u_5-63=3^t\\2u_5+32=2.2^t\end{matrix}\right.\)=>\(1+2.2^t=2^t\Leftrightarrow\dfrac{1}{3^t}+2.\left(\dfrac{2}{3}\right)^t=1\)(1)
Vì \(y=\dfrac{1}{3^t}+2.\left(\dfrac{2}{3}\right)^t\) là hàm nghịch biến trên R nên (1) có nghiệm duy nhất t=2 => \(u_5=36\). Thay vào pt ban đầu: \(log_3\left(2.36-63\right)=2log_4\left(u_n-8n+8\right)\)\(\Leftrightarrow u_n=8n-4=4+8\left(n-1\right)\)
=> \(S_n=\dfrac{n\left(8+8\left(n-1\right)\right)}{2}=4n^2\)
=> \(\dfrac{u_n.S_{2n}}{u_{2n}.S_n}=\dfrac{\left(8n-4\right)\left(16n^2\right)}{\left(16n-4\right).4n^2}=\dfrac{4\left(2n-1\right)}{\left(4n-1\right)}< \dfrac{148}{75}\)
=> \(n< 19\)\(\Rightarrow n_{max}=18\)
cảm ơn bạn