K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2018

c)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

23 tháng 5 2017

a)
\(u_1=1+\left(1-1\right).2^1=1\);
\(u_2=1+\left(2-1\right).2^2=1+2^2=5\);
\(u_3=1+\left(3-1\right).2^3=1+2.2^3=17\);
\(u_4=1+\left(4-1\right).2^4=1+3.2^4=49\);
\(u_5=1+\left(5-1\right).2^5=1+4.2^5=129\).
b)
\(u_n=1+\left(n-1\right).2^n\).
\(u_{n+1}=1+\left(n+1-1\right).2^{n+1}=1+n.2^{n+1}\)
\(=1+\left(n-1\right).2^{n+1}+2^{n+1}\)\(=2\left[1+\left(n-1\right).2^n\right]+2^{n+1}-1\)
\(=2.u_n+2^{n+1}-1\).
Vậy công thức truy hồi của dãy số là: \(\left\{{}\begin{matrix}u_1=1\\u_n=2u_{n-1}+2^n-1\end{matrix}\right.\).
c) Có \(u_n=1+\left(n-1\right).2^n\ge1+\left(1-1\right).2^n=1\).
Vậy \(u_n\ge1,\forall n\in N^{\circledast}\). Nên dãy \(\left(u_n\right)\) bị chặn dưới bởi 1.
Xét .
\(u_n-u_{n-1}=2u_{n-1}+2^n-1-u_{n-1}=u_{n-1}+2^n-1\)\(\ge1+2^n-1=2^n>0,\forall n\in N^{\circledast}\).
Vậy \(u_n-u_{n-1}>0,\forall n\in N^{\circledast}\) nên dãy \(\left(u_n\right)\) là dãy số tăng.

22 tháng 3 2020

+) \(U_n=\sqrt{n^2+2}-n=\frac{2}{\sqrt{n^2+2}+n}\)

\(U_{n+1}=\sqrt{\left(n+1\right)^2+2}-\left(n+1\right)=\frac{2}{\sqrt{\left(n+1\right)^2+2}+n+1}\)

Vì \(\frac{2}{\sqrt{n^2+2}+n}>\frac{2}{\sqrt{\left(n+1\right)^2+2}+n+1}\)với mọi số tự nhiên n 

=> \(U_n>U_{n+1}\)với mọi số tự nhiên n

=> \(U_n\) là dãy giảm.

+) Ta có: \(\sqrt{n^2+2}-n\le\sqrt{\left(n+\sqrt{2}\right)^2}-n=\sqrt{2}\)với mọi số tự nhiên n 

=> \(U_n\) là dãy bị chặn

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Chọn A

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

• Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right) + 1}}{{\left( {n + 1} \right) + 2}} = \frac{{n + 1 + 1}}{{n + 1 + 2}} = \frac{{n + 2}}{{n + 3}}\)

Xét hiệu:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{n + 2}}{{n + 3}} - \frac{{n + 1}}{{n + 2}} = \frac{{{{\left( {n + 2} \right)}^2} - \left( {n + 1} \right)\left( {n + 3} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{{\left( {{n^2} + 4n + 4} \right) - \left( {{n^2} + n + 3n + 3} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{{n^2} + 4n + 4 - {n^2} - n - 3n - 3}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{1}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)

Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

• Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{\left( {n + 2} \right) - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(n + 2 > 0 \Leftrightarrow \frac{1}{{n + 2}} > 0 \Leftrightarrow 1 - \frac{1}{{n + 2}} < 1 \Leftrightarrow {u_n} < 1\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.

\(n \ge 1 \Leftrightarrow n + 2 \ge 1 + 2 \Leftrightarrow n + 2 \ge 3 \Leftrightarrow \frac{1}{{n + 2}} \le \frac{1}{3} \Leftrightarrow 1 - \frac{1}{{n + 2}} \ge 1 - \frac{1}{3} \Leftrightarrow {u_n} \ge \frac{2}{3}\)

Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.

Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.

Chọn A.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có: \({u_{n + 1}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 1 + 1}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 2}}\)

Xét hiệu \({u_{n + 1}} - {u_n} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 2}} - \frac{{{n^2}}}{{n + 1}} = \frac{{{{\left( {n + 1} \right)}^3} - {n^2}\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{{n^3} + 3{n^2} + 3n + 1 - {n^3} - 2{n^2}}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\)

\( = \frac{{{n^2} + 3n + 1}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0\) với mọi n ∈ ℕ*.

Vì vậy dãy số đã cho là dãy số tăng.

b) Ta có: \({u_{n + 1}} = \frac{2}{{{5^{n + 1}}}}\)

Xét hiệu \({u_{n + 1}} - {u_n} = \frac{2}{{{5^{n + 1}}}} - \frac{2}{{{5^n}}} = - \frac{4}{5}.\frac{2}{{{5^n}}} = - \frac{8}{{{5^{n + 1}}}} < 0\)

Vì vậy dãy số đã cho là dãy số giảm.

6:

\(u_n=8+7\left(n-1\right)=7n+1\)

7: Đặt un=7/12

=>\(\dfrac{2n+5}{5n-4}=\dfrac{7}{12}\)

=>35n-28=24n+60

=>11n=88

=>n=8

=>Đây là số hạng thứ 8

8: \(\dfrac{2n}{n^2+1}=\dfrac{9}{41}\)

=>9n^2+9=82n

=>9n^2-82n+9=0

=>(9n-1)(n-9)=0

=>n=9(nhận) hoặc n=1/9(loại)

=>Đây là số thứ 9

10B

9D