Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Dãy số liệu thứ 2 có 2 số liệu khác với dãy số liệu 1 là số đứng ở vị trí đầu tiên và số đứng ở vị trí cuối cùng. Tuy nhiên tổng của số đứng đầu tiên + số đứng ở vị trí cuối cùng không thay đổi. Do đó; số trung bình không thay đổi.
Các khẳng định đúng là: (1) ; (2); (3)
(4) cần sửa thành: Phương sai là bình phương của độ lệch chuẩn.
Chọn C
Tham khảo:
a) Ta có: \(f(0) = a{.0^2} + b.0 + c = 1 \Rightarrow c = 1.\)
Lại có:
\(f(1) = a{.1^2} + b.1 + c = 2 \Rightarrow a + b + 1 = 2\)
\(f(2) = a{.2^2} + b.2 + c = 5 \Rightarrow 4a + 2b + 1 = 5\)
Từ đó ta có hệ phương trình \(\left\{ \begin{array}{l}a + b + 1 = 2\\4a + 2b + 1 = 5\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a + b = 1\\4a + 2b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)(thỏa mãn điều kiện \(a \ne 0\))
Vậy hàm số bậc hai đó là \(y = f(x) = {x^2} + 1\)
b) Tập giá trị \(T = \{ {x^2} + 1|x \in \mathbb{R}\} \)
Vì \({x^2} + 1 \ge 1\;\forall x \in \mathbb{R}\) nên \(T = [1; + \infty )\)
Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.1}} = 0;{y_S} = f(0) = 1\)
Hay \(S\left( {0;1} \right).\)
Vì hàm số bậc hai có \(a = 1 > 0\) nên ta có bảng biến thiên sau:
Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) và đồng biến trên khoảng \(\left( {0; + \infty } \right)\)
từ 0 đến 9 có : 10 chữ số
từ 10 đến 80 có : 71 số
=> từ 10 đến 80 có: 71 x 2 = 142 chữ số
=> từ 0 đến 80 có : 10 + 142 = 152 chữ số
a) Từ 0 -> 9 có: 10 CS
Từ 10 -> 80 có: [(80 - 10) + 1] x 2 = 142 CS
Dãy số trên có số chữ số là:
10 + 142 = 152 (CS)
Ta nhận xét các chữ số chia hết cho 3 là 0; 3; 6; 9
Từ 0 -> 9 có : 1 chữ số 3
10 -> 20; 20-> 30; ..... 60 -> 70; 70 -> 80 Mỗi cặp đó đều có 1 CS 3 ở hàng đơn vị. Vậy có tổng cộng số CS 3 là 1 x 7 = 7 (CS)
Riêng từ 30 -> 39 thì: có 10 CS 3 ở hàng chục
Vậy từ 0 đến 80 có số chữ số 3 là: 1 + 7 + 10 = 18 (CS)
Ta nhận thấy các chữ số 3, 6 ,9 đều có cùng số chữ số trong dãy trên riêng số 9 là bị thiếu 10 CS vì không có cặp 90 -> 99
Các số 10; 20; 30;.... 80; 90 đều có CS 0 ở hàng đơn vị vậy có tất cả : 9 CS 0
Có tổng cộng các chữ số chia hết cho 3 là:
18 + 18 + 8 + 9 + 1 = 54 (CS)
Đ/S: a) 152 CS
b) 54 CS
Chúc bạn học tốt !!!
Hàm số xác định khi \(\left\{{}\begin{matrix}x^2+2mx+2018m+2019>0\\mx^2+2mx+2020\ge0\end{matrix}\right.\)
Xét \(f\left(x\right)=x^2+2mx+2018m+2019\)
Có: \(\Delta'=m^2-2018m-2019\)
Để \(f\left(x\right)>0\) thì \(\Delta'< 0\Leftrightarrow m^2-2018m-2019< 0\Leftrightarrow-1< m< 2019\)(*)
Xét \(g\left(x\right)=mx^2+2mx+2020\)
Dễ thấy \(m=0\) thì \(g\left(x\right)=\sqrt{2020}>0\)(1)
Để \(g\left(x\right)\ge0\) thì \(\left\{{}\begin{matrix}m>0\\\Delta'\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-2020m\le0\end{matrix}\right.\)\(\Leftrightarrow0< m\le2020\) (2)
(1),(2)\(\Rightarrow g\left(x\right)\ge0\Leftrightarrow0\le m\le2020\) (**)
(*),(**) suy ra hàm số xác định khi \(0\le m< 2019\)
Do đó tập hợp các giá trị nguyên của m để hàm số xác định là:
\(S=\left\{m\in Z|0\le m< 2019\right\}\) và tập hợp có 2019 phần tử