\(\frac{49}{1}\)+\(\frac{48}{2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

cần ko tôi giúp cho

19 tháng 3 2017

50A=\(\left(\frac{49}{1}+.......+\frac{1}{49}\right)49:2\)

50A= 1201

A=1201:50

A=\(\frac{1201}{10}\)=120.1

mà 120,1 ko phải số tự nhiên mà là số thập phân

=>A ko là số tự nhiên

25 tháng 5 2016

Ta có: 

1/49 + 1 = 50/49 

2/48 + 1 = 50/48 

3/47 + 1 = 50/47 



47/3 + 1 = 50/3 

48/2 + 1 = 50/2 

0 + 1 = 50/50 

Cộng vế theo vế dãy đẳng thức trên ta được: 

1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50 

⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50) 

⇒ B = 50A 

⇒ A/B = 1/50 

 

25 tháng 5 2016

Ta có: 

1/49 + 1 = 50/49 

2/48 + 1 = 50/48 

3/47 + 1 = 50/47 



47/3 + 1 = 50/3 

48/2 + 1 = 50/2 

0 + 1 = 50/50 

Cộng vế theo vế dãy đẳng thức trên ta được: 

1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50/2 + 50/3 + 50/4 +........+ 50/49 + 50/50 

⇒ 1/49 + 2/48 +........+ 47/3 + 48/2 + 49 = 50 x (1/2 + 1/3 + 1/4 +........+ 1/49 + 1/50) 

⇒ B = 50A 

⇒ A/B = 1/50 

19 tháng 3 2017

tớ bít nè

19 tháng 3 2017

50A=(\(\frac{49}{1}+....+\frac{1}{49}\))49:2

50A=1201

A=1201:50=\(\frac{1201}{100}\)=12,01

MÀ 12.01 ko phải là số tự nhiên mà là số thập phân =>A ko phải là số tự nhiên

20 tháng 5 2016

vì là phân số nên không phải là số tự nhiên

theo mik là zậy

16 tháng 3 2018

p=\(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+49\)

=\(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+\frac{50}{50}\)

=\(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

=\(50\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

p=50*S

\(\frac{S}{\text{p}}=\frac{1}{50}\)

20 tháng 4 2018

s=1,p=50

7 tháng 4 2018

\(50\cdot A=\frac{49}{1}+\frac{48}{2}+\frac{47}{3}+...+\frac{2}{48}+\frac{1}{49}\)

\(50\cdot A=1+\left(\frac{48}{2}+1\right)+\left(\frac{47}{3}+1\right)+...+\left(\frac{2}{48}+1\right)+\left(\frac{1}{49}+1\right)\)

\(50\cdot A=\frac{50}{50}+\frac{50}{2}+\frac{50}{3}+...+\frac{50}{48}+\frac{50}{49}\)

\(50\cdot A=50\cdot\left(\frac{1}{50}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}\right)\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\)

28 tháng 4 2017

bài khó nhất nhé

2. Ta có : 

\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

cộng vào 48 phân số đầu với 1, trừ phân số cuối đi 48 ta được :

\(P=\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\left(\frac{49}{1}-48\right)\)

\(P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

\(P=\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

\(P=50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}}{50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)}=\frac{1}{50}\)

9 tháng 3 2019

câu 5đáp án là72

7 tháng 4 2016

Ta có:\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+....+\frac{48}{2}+\frac{49}{1}+50-50\)

               \(=\left(1+\frac{1}{49}\right)+\left(1+\frac{2}{48}\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+\left(1+\frac{49}{2}\right)-50\)

              \(=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+....+\frac{50}{2}+\frac{50}{1}-50\)

              \(=50\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+....+\frac{1}{2}\right)+50-50\)

              \(=50\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+....+\frac{1}{2}\right)\)

mà  \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}\)

\(=>\frac{S}{P}=\frac{1}{50}\)

Vậy \(\frac{S}{P}=\frac{1}{50}\)