Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta co : goc DAB+ goc BAC+ goc CAE=180-> goc DAB+ goc CAE=180- goc BAC
ma goc BAC =90 ( tam giac ABC vuong tai A)
nen goc DAB+ goc CAE=180-90=90
lai co gic DAB+ goc DBA=90 ( tam giac BAD vuong tai D)
==> goc CAE=goc DBA
xet tam giac vuong BDA va tam giac AEC ta co :
AB= AC ( gt) goc DBA= goc CAE (cmt)
--> cm tam giac BDA= tam giac AEC ( ch=gn)
b) tam giac BDA= tamgia AEC --> DA=CE va BD=AE
ma DE = DA+AE--->DE=EC+AE
a) Xét ∆BAD và ∆ACE có:
^BDA=^AEC (cùng bằng 90 độ)
AB=AC (gt)
^BAD=^ACE (cùng phụ với ^EAC)
suy ra ∆BAD=∆ACE (cạnh huyền-góc nhọn)
b) Do ∆BAD=∆ACE nên AD=CE và AE=BD
mà DE=DA+AE
suy ra DE = CE+BD (đpcm)
Ta có: ΔAEC= ΔBDA
⇒AE = BD và EC = DA
Mà DE = DA + AE
Vậy: DE = CE + BD
a) Xét ∆BAD và ∆ACE có:
^BDA=^AEC (cùng bằng 90 độ)
AB=AC (gt)
^BAD=^ACE (cùng phụ với ^EAC)
suy ra ∆BAD=∆ACE (cạnh huyền-góc nhọn)
b) Do ∆BAD=∆ACE nên AD=CE và AE=BD
mà DE=DA+AE
suy ra DE = CE+BD (đpcm)
Bài 2)
a) Xét ∆AOD và ∆COB có:
^OAD=^OCB(so le trong)
AD=BC(gt)
^ADO=^CBO(so le trong)
suy ra ∆AOD=∆COB (g-c-g)
do đó OA=OC (hai cạnh tương tứng)
b)
Xét ∆AEO và ∆COF có:
^EAO=^OCF (so le trong)
OA=OC (c/m trên)
^AOE=^COF (đối đỉnh)
suy ra ∆AEO=∆COF (g-c-g)
do đó OE=OF (hai cạnh tương ứng)