Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: CAH + HAB = BAC => CAH + HAB = 90o (1)
Xét △HAB vuông tại H có: HAB + HBA = 90o (tổng 2 góc nhọn trong △ vuông (2)
Từ (1) và (2) => CAH = HBA (3)
b, Sửa đề: chứng minh ACB = HAB
Xét △ABC vuông tại A có: ABC + ACB = 90o (tổng 2 góc nhọn trong △ vuông) (4)
Ta có: CAH + HAB = BAC => CAH + HAB = 90o (5)
=>Từ (3) ; (4) và (5) => ACB = HAB
Tam giác ABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\) (1)
Tam giác ABH vuộng tại H
\(\Rightarrow\widehat{ABC}+\widehat{BAH}=90^o\) (2)
Từ (1) và (2) => \(\widehat{ACB}=\widehat{BAH}\)
Tam giác ACH vuông tại H
\(\Rightarrow\widehat{ACB}+\widehat{CAH}=90^o\) (3)
Từ (1) và (3) \(\Rightarrow\widehat{ABC}=\widehat{CAH}\)
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
a)
Xét 2 tam giác vuông ABC và HAC có:
\(\widehat{C}\) chung
=> tg ABC \(\sim\) td HAC (g.g)
=> \(\widehat{ABC}=\widehat{HAC}\)
b)
Xét 2 tg vuông ACB và HAB có:
\(\widehat{B}\) chung
=> tg ACB \(\sim\) tg HAB (g.g)
=> \(\widehat{ACB}=\widehat{HAB}\)
Vì ΔABC vuông tại A
==> BC2 = AC2 +AB2 ( Định lý Pitago )
BC2 = 42 + 32
BC2 = 27
==> BC = √27
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Vậy: BC=5cm
c. Xét △ABH có: ^AHB = 90o
⇒ ^BAH + ^B = 90o (hai góc nhọn phụ nhau) (1)
Xét △AHC có: ^AHC = 90o
⇒ ^CAH + ^C = 90o (hai góc nhọn phụ nhau) (2)
Từ (1) và (2)
Mà ^C > ^B (cmt)
⇒ ^CAH > ^BAH (đpcm)
a) Xét hai tam giác vuông ABH và ACH
có:+AB=AC( \(\Delta ABC\) cân tại A)
+AH: cạnh chung
Vậy \(\Delta ABH=\Delta ACH\left(ch-cgv\right)\)
=> HB=HC( hai cạnh tương ứng)
b) Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)
nên: góc BAH=góc CAH( hai góc tương ứng)
^..^ ^_^
a) Xét \(\Delta\nu ABH\) và \(\Delta\nu ACH\) có :
\(AB=AC\left(gt\right)\)
\(AH\) là cạnh chung
Do đó : \(\Delta\nu ABH=\Delta\nu ACH\left(ch-gn\right)\)
\(\Rightarrow HB=HC\) ( vì hai cạnh tương ứng )
b ) Vì : \(\Delta\nu ABH=\Delta\nu ACH\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
a, Xét \(\Delta ABC\),ta có:
\(\widehat{A}=90\)
=> \(\widehat{B}+\widehat{C}=90\) (1)
Xét \(\Delta CAH\),ta có:
\(\widehat{AHC}=90\)
=>\(\widehat{CAH}+\widehat{C}=90\) (2)
Từ (1) và (2)=>\(\widehat{B}=\widehat{CAH}\) (đpcm)
b, Xét \(\Delta BAH\),ta có:
\(\widehat{AHB}=90\)
=>\(\widehat{B}+\widehat{BAH}=90\) (3)
Từ (1) và (3)=>\(\widehat{C}=\widehat{BAH}\) (đpcm)
a, tam giác AHB vuông tại H (gt) => ^B + ^HAB = 90 (đl)
^BAC = 90 (gt) => ^HAB + ^CAH = 90
=> ^B = ^CAH
b, tương tự a