Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
A B C H
a) Xét hai tam giác vuông ABH và ACH
có:+AB=AC( \(\Delta ABC\) cân tại A)
+AH: cạnh chung
Vậy \(\Delta ABH=\Delta ACH\left(ch-cgv\right)\)
=> HB=HC( hai cạnh tương ứng)
b) Vì \(\Delta ABH=\Delta ACH\left(cmt\right)\)
nên: góc BAH=góc CAH( hai góc tương ứng)
^..^ ^_^
A B C H
a) Xét \(\Delta\nu ABH\) và \(\Delta\nu ACH\) có :
\(AB=AC\left(gt\right)\)
\(AH\) là cạnh chung
Do đó : \(\Delta\nu ABH=\Delta\nu ACH\left(ch-gn\right)\)
\(\Rightarrow HB=HC\) ( vì hai cạnh tương ứng )
b ) Vì : \(\Delta\nu ABH=\Delta\nu ACH\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
a) Hai tam giác vuông ABH và ACH có:
AB=AC(gt)
AH cạnh chung.
Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)
Suy ra HB=HC
b)∆ABH=∆ACH(Câu a)
Suy ra ^BAH=^CAH(Hai góc tương ứng)
a) Hai tam giác vuông ABH và ACH có:
AB=AC(gt)
AH cạnh chung.
Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)
Suy ra HB=HC
b)∆ABH=∆ACH(Câu a)
Suy ra ˆBAHBAH^=ˆCAHCAH^(Hai góc tương ứng)
Xem thêm tại: http://loigiaihay.com/bai-63-trang-136-sach-giao-khoa-toan-7-tap-1-c42a5157.html#ixzz4envied4H
a) Hai tam giác vuông ABH và ACH có:
AB=AC(gt)
AH cạnh chung.
Nên ∆ABH=∆ACH(Cạnh huyền-cạnh góc vuông)
Suy ra HB=HC
b)∆ABH=∆ACH(Câu a)
Suy ra ˆBAH^=ˆCAH(Hai góc tương ứng)
a) Xét tam giác AHB và tam giác AHC có:
\(\widehat{AHB}=\widehat{AHC}=90^o\)
AB=AC(tam giác ABC cân)
\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân)
Do đó tam giác AHB=tam giác AHC(ch-gn)
Suy ra HB=HC(hai cạnh tương ứng)
b)Vì tam giác AHB=tám giác AHC(câu a)
Nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
a/ tam giác BAH và tam giác CAH có
AB=AC ( tam giác ABC cân vì góc B = góc C)
góc BHA = góc CHA = 90 độ
góc B = góc C
=> tam giác BAH = tam giác CAH (CH - GN)
=>góc BAH = góc HAC
Tam giác ABC vuông tại A
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\) (1)
Tam giác ABH vuộng tại H
\(\Rightarrow\widehat{ABC}+\widehat{BAH}=90^o\) (2)
Từ (1) và (2) => \(\widehat{ACB}=\widehat{BAH}\)
Tam giác ACH vuông tại H
\(\Rightarrow\widehat{ACB}+\widehat{CAH}=90^o\) (3)
Từ (1) và (3) \(\Rightarrow\widehat{ABC}=\widehat{CAH}\)