Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo nhé!
-Gọi G là trung điểm của CD.
-△ADC có: E là trung điểm AD, G là trung điểm CD.
\(\Rightarrow\)EG là đường trung bình của △ADC
\(\Rightarrow\)EG//AC mà AC⊥AB tại A \(\Rightarrow\)EG⊥AB
-△ABG có AE là đường cao (AE⊥BG tại D) ; GE là đường cao (GE⊥AB) ; AE cắt GE tại E. \(\Rightarrow\)E là trực tâm của △ABG.
\(\Rightarrow\)BE⊥AG.
△DCF có: A là trung điểm DF ; G là trung điểm CD.
\(\Rightarrow\)AG là đường trung bình của △DCF.
\(\Rightarrow\)AG//FC mà BE⊥AG \(\Rightarrow\)BE⊥FC.
-△BCF có: FE là đường cao (FE⊥BC tại D) ; BE là đường cao (BE⊥FC) ; BE cắt FE tại E \(\Rightarrow\)E là trực tâm của △BCF
\(\Rightarrow\)CE⊥BF
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
TỰ NGHĨ NHAK