K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

A B C H E F I K 1 1 1

a) Áp dụng địnhh lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=4,8\left(cm\right)\)

b)  Xét tam giác AEH và tam giác AHB có:

\(\hept{\begin{cases}\widehat{A1}chung\\\widehat{AEH}=\widehat{AHB}=90^0\end{cases}\Rightarrow\Delta AEH~\Delta AHB\left(g.g\right)}\)

c) Xét tam giác AHC và tam giác AFH có:

\(\hept{\begin{cases}\widehat{HAC}chung\\\widehat{AHC}=\widehat{AFH}=90^0\end{cases}\Rightarrow\Delta AHC~\Delta AFH\left(g.g\right)}\)

\(\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\)( các đoạn t.ứng tỉ lệ ) 

\(\Rightarrow AH^2=AC.AF\)

d) Xét tứ giác AEHF có:

\(\hept{\begin{cases}\widehat{AEH}=90^0\\\widehat{EAF}=90^0\\\widehat{AFH}=90^0\end{cases}\Rightarrow AEHF}\)là hình chữ nhật ( dhnb)

\(\Rightarrow EF\)là đường phân giác của góc AEH và AH là đường phân giác của góc EHF (tc hcn )

\(\Rightarrow\widehat{E1}=\frac{1}{2}\widehat{AFH},\widehat{H1}=\frac{1}{2}\widehat{EHF}\)

Mà \(\widehat{AEH}=\widehat{EHF}\left(tc\right)\)

\(\Rightarrow\widehat{E1}=\widehat{H1}\) (3)

Vì tam giác AHC vuông tại H nên \(\widehat{HAC}+\widehat{C}=90^0\)( 2 góc phụ nhau ) (1)

Vì tam giác AFH vuông tại F nên \(\widehat{HAF}+\widehat{H1}=90^0\)( 2 góc phụ nhau ) (2)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{H1}\)(4)

Từ (3) và (4) \(\Rightarrow\widehat{C}=\widehat{E1}\)

Xét tam giác ABC và tam giác AFE có:

\(\hept{\begin{cases}\widehat{A}chung\\\widehat{C}=\widehat{E1}\left(cmt\right)\end{cases}\Rightarrow\Delta ABC~\Delta AFE\left(g.g\right)}\)

e) vÌ \(\Delta ABC~\Delta AFE\left(cmt\right)\)

\(\Rightarrow\frac{AB}{AC}=\frac{AF}{AE}\)( các đoạn t.ứng tỉ lệ ) (5)

Xét tam giác ABC có AK là đường phân giác trong của tam giác ABC

\(\Rightarrow\frac{BK}{KC}=\frac{AB}{AC}\)( tc)  (6)

Xét tam giác AEF có AI là đường phân giác trong của tam giác AEF

\(\Rightarrow\frac{IF}{IE}=\frac{AF}{AE}\)(tc)  (7)

Từ (5) ,(6) và (7) \(\Rightarrow\frac{BK}{KC}=\frac{IF}{IE}\)

\(\Rightarrow KB.IE=KC.IF\left(đpcm\right)\)

7 tháng 4 2019

Mong mọi người giúp e ạ thứ 3 e kiểm tra rồi ạ!😭

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

c: ΔABH vuông tại H

mà HE là đường cao

nên AE*AB=AH^2

ΔACH vuông tại H có HF là đường cao

nên AF*AC=AH^2=AE*AB

11 tháng 11 2018

 a,Tứ giác AEHG  la hình chữ nhật.thật vậy:

xét tứ giác AEHG có goc a=90 độ ,góc E=90 độ(HE VUÔNG GÓC VỚI AB) , góc H=90 độ (AH vuông góc với BC)

suy ra tứ giác AEHG la hình chữ nhật

b,xét tam giac BHA có AH^2=AE*AB (1)

xét tam giác AHC có AH^2=AF*AC (2)

Từ (1) và (2) suy ra AE*AB=AF*AC

13 tháng 2 2021

a, Xét △ ABC vuông tại A có: 

BC2 = AC2 + AB2 (định lý Pytago)

=> BC2 = 62 + 82 = 100

=> BC = 10 cm

Vì AD là phân giác \(\widehat{BAC}\) (gt)

\(\Rightarrow\frac{CD}{AC}=\frac{BD}{AB}=\frac{CD+BD}{AC+AB}=\frac{BC}{6+8}=\frac{10}{14}=\frac{5}{7}\)(áp dụng t/c dãy tỉ số bằng nhau)

Do đó: \(\frac{CD}{AC}=\frac{5}{7}\) \(\Rightarrow\frac{CD}{6}=\frac{5}{7}\) \(\Rightarrow CD=\frac{6.5}{7}=\frac{30}{7}\)(cm)

\(\frac{BD}{AB}=\frac{5}{7}\)\(\Rightarrow\frac{BD}{8}=\frac{5}{7}\)\(\Rightarrow BD=\frac{8.5}{7}=\frac{40}{7}\)(cm)

b, Xét △AHB vuông tại H và △AEH vuông tại E

Có: \(\widehat{HAB}\)là góc chung

=> △AHB ᔕ △AEH (g.g)

\(\Rightarrow\frac{AH}{AE}=\frac{AB}{AH}\)

=> AH . AH = AE . AB

=> AH2 = AE . AB

c, Xét △AHC vuông tại H và △AFH vuông tại F

Có: \(\widehat{HAC}\)là góc chung

=> △AHC ᔕ △AFH (g.g)

\(\Rightarrow\frac{AH}{AF}=\frac{AC}{AH}\)

=> AH2 = AF . AC

mà AH2 = AE . AB (cmt)

=> AE . AB = AF . AC

13 tháng 3 2022

A B C F E H

Xét ΔAFH và ΔAHC có:

góc HAC chung

AFC=AHC=90 độ (gt)

=>ΔAFH∼ΔAHC(gg)

=>AF/AH=AH/AC

=>AF.AC=AH^2(1)

d,Từ ΔAEH∼ΔAHB

=>AE/AH=AH/AB

=>AE.AB=AH^2(2)

từ 1 và 2=>AE.AB=AF.AC

=>AE/AC=AF/AB

mà góc A chung

=>ΔAEF∼ΔACB(c.g.c)

e,Ta có AE.AB=AH^2

=>AE.6=4.8^2

=>AE=4,8^2/6=3,84

AF.AC=AH^2=>AF.8=4,8^2=>AF=2,8

=>Saef=2,8.3,84.1/2=5,376

Sbcfe=Sabc-Saef=(6.8:2)-5,376=24-3,76=20.24

13 tháng 3 2022

A B C E F H

a,Áp dụng Pytago ta có

BC^2=AB^2+AC^2

BC^2=6^2+8^2=36+64=100

BC=10

Mặt khác :

Sabc=1/2AB.AC=1/2BC.AH

=>AB.AC=BC.AH

=>6.8=10.AH

AH=48/10=4,8

b,Xét △AEH và △AHB có:

góc HAB chung

AEH=AHB=90 độ (gt)

=>ΔAEH ∼ΔAHB

 

 

a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

b: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có

góc EAH chung

Do đó: ΔAEH\(\sim\)ΔAHB

c: Xét ΔAHC vuông tại H có HF là đường cao

nên \(AH^2=AF\cdot AC\left(1\right)\)

d: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AH^2=AE\cdot AB\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay AE/AC=AF/AB

=>ΔAEF\(\sim\)ΔACB

7 tháng 4 2022

giúp mk câu e luôn ạ