K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2. ΔABC có 𝐴̂ = 900 . Lấy M trên BC vẽ MH ⊥ AB, MK ⊥ AC.a) So sánh 𝐵𝑀𝐻 ̂ và 𝐵𝐶𝐴 ̂, 𝐻𝐵̂𝑀 và 𝐾𝑀𝐶 ̂b) Tính 𝐻𝑀𝐾 ̂Bài 3. ΔABC có 𝐴̂ = 60 0 , AD là phân giác của góc A (D ∈ BC). Từ D vẽ đường thẳng song song với AB cắt AC ở M. Từ M vẽ MK // AD và cắt BC tại K.a) Tính 𝐵𝐴𝐷 ̂, 𝐷𝑀𝐾 ̂, 𝐴𝐷𝑀̂;b) Chứng minh rằng MK là phân giác của góc 𝐷𝑀𝐶 ̂.Bài...
Đọc tiếp

Bài 2. ΔABC có 𝐴̂ = 900 . Lấy M trên BC vẽ MH ⊥ AB, MK ⊥ AC.

a) So sánh 𝐵𝑀𝐻 ̂ và 𝐵𝐶𝐴 ̂, 𝐻𝐵̂𝑀 và 𝐾𝑀𝐶 ̂

b) Tính 𝐻𝑀𝐾 ̂

Bài 3. ΔABC có 𝐴̂ = 60 0 , AD là phân giác của góc A (D ∈ BC). Từ D vẽ đường thẳng song song với AB cắt AC ở M. Từ M vẽ MK // AD và cắt BC tại K.

a) Tính 𝐵𝐴𝐷 ̂, 𝐷𝑀𝐾 ̂, 𝐴𝐷𝑀̂;

b) Chứng minh rằng MK là phân giác của góc 𝐷𝑀𝐶 ̂.

Bài 4. Cho ΔABC. Tia phân giác của góc B và C cắt nhau ở I. Từ I kẻ đường thẳng song song vớ BC cắt AB ở F và AC ở E.

a) Chứng minh 𝐷𝐼𝐵̂ = 𝐷𝐵𝐼 ̂

b) Chứng minh 𝐸𝐼𝐶̂ = 𝐸𝐶𝐼 ̂ . Bài 5. Cho ΔABC có 𝐴̂ = 120 0 . Từ C kẻ đường thẳng song song với phân giác AD của tam giác ABC và đường thẳng này cắt đường thẳng BA tại M. Tính 𝐴𝑀𝐶 ̂ và 𝐴𝐶𝑀̂.

Bài 5. Cho ΔABC có 𝐴̂ = 120 0 . Từ C kẻ đường thẳng song song với phân giác AD của tam giác ABC và đường thẳng này cắt đường thẳng BA tại M. Tính 𝐴𝑀𝐶 ̂ và 𝐴𝐶𝑀̂.

MÌNH BT LÀ DÀI NHƯNG MN AI ÓC THỜI GIAN THÌ GIÚP MÌNH Ạ

CHÂN THÀNH CẢM ƠN

0

hỏi từ năm trước xong mốc meo không ai trả lời mới chán chớ..

https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc

a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)

Mặt khác dễ dàng chứng minh được EDFˆ=60o

Vì vậy tam giác DEF là tam giác đều

b)ΔEDK=ΔFDT(hai cạnh góc vuông)

nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D

c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o

AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)

AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)

Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều

d)Ta có AF=AC-FC=CM-FC=m-n.

12 tháng 3 2020

Sửa đề △ABC có ^CAB = 120o thì mới chứng minh △DEF đều được.

a, Xét △FDA vuông tại F và △EDA vuông tại E

Có: DA là cạnh chung

      ^FAD = ^EAD (gt)

=> △FDA = △EDA (ch-gn)

=> DF = DE (2 cạnh tương ứng)

=> △DEF cân tại D   (1)

Vì AD là phân giác ^CAB => ^CAD = ^BAD = ^CAB : 2 = 120o : 2 = 60o

Xét △FAD vuông tại F có: ^FAD + ^FDA = 90o (tổng 2 góc nhọn trong tam giác vuông)

=> 60o + ^FDA = 90o  => ^FDA = 30o  

Mà ^FDA = ^EDA (△FDA = △EDA)  => ^EDA = 30o

Ta có: ^FDE = ^FDA + ^EDA = 30o + 30o = 60o  (2)

Từ (1) và (2) => △DEF đều

b, Ta có: AI = AF + FI  và AK = AE + EK

Mà AF = AE (△FDA = △EDA) ; FI = EK (gt)

=> AI = AK

Xét △IAD và △KAD 

Có: AI = AK (cmt)

  ^IAD = ^KAD (gt)

   AD là cạnh chung

=> △IAD = △KAD (c.g.c)

=> ID = KD (2 cạnh tương ứng)

=> △IDK cân tại D

c, AD // CM (gt) => ^DAB = ^CMB (2 góc đồng vị)

Mà ^DAB = 60o  => ^CMB = 60 => ^CMA = 60o  (3)

Ta có: ^CAM + ^CAB = 180o (2 góc kề bù)

=> ^CAM + 120o = 180o   => ^CAM = 60o   (4)

Từ (3) , (4) => ^CMA = ^CAM => △CMA cân tại C mà ^CMA = 60o  => △MAC đều 

=> AC = AM = MC

Vì △ vuông FAD có: ^FDA = 30o (cmt)

=> AD = 2 . AF 

=> AD = 2 . (AC - CF)

=> AD = 2 . (CM - CF) = 2 . (m - n)

12 tháng 6 2017

mình không vẽ hình nhé

1/ có EAD=BAD mà BAD=EDA (2 góc sltrong, ED//AB) nên EAD=EDA

2/ có EAD=EDA (cmt)

mà EAD=CEK (2 góc dồng vị, EK//AD) ; EDA=DEK (2 góc sltrong, EK//AD)

nên CEK=DEK => EK là tia p/g của DEC

12 tháng 6 2017

A B C D E K

\(\Delta ABC\)có đường phân giác AD

=> BÂD = DÂC

1/ Ta có:

DE // AB => BÂD = ^ADE [so le trong]

Mà BÂD = DÂC => EÂD = ^EDA

2/ Ta lại có:

AD // EK => EÂD = CÊK [đồng vị]

Mà EÂD = ^EDA

=> ^EDA = CÊK 

Mà ^EDA = ^DEK [so le trong]

=> CÊK = DÊK

Vậy EK là tia phân giác của DÊC

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E