K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC vuông tại A và ΔBDE vuông tại D có

góc B chung

=>ΔBAC đồng dạng với ΔBDE

b: Xét ΔCHA vuông tại H và ΔCKD vuông tại K có

góc HCA=góc KCD

=>ΔCHA đồng dạngvơi ΔCKD

=>CH/CK=CA/CD

=>CH*CD=CK*CA

9 tháng 4 2023

còn cái hình thì sao bạn

 

18 tháng 7 2015

b ) Xét tam giác ABD và tam giác KBD , có

BD cạnh chung

góc ABD = góc KBD ( gt )

BA = BK ( tam giác ABK cân tại B )

suy ra tam giác ABD = tam giác KBD ( c.g.c)

suy ra góc BAD = góc BKD ( 2 góc tương ứng)

mà góc BAD = 90 độ

suy ra BKD = 90 độ

nên DK vuông góc BC

19 tháng 7 2015

a) Tam giác ABK có BE vừa là đường cao vừa là phân giác nên tam giác ABK cân tại B

=> BE là đường trung trực của đoạn thẳng AK.

hay A và K đối xứng nhau qua BD.

b) Xét tam giác ABD và KBD có 

    AB=KB(tam giác ABK cân tại B)

Góc ABD=KBD(gt)

BD cạnh chung .

Vậy tam giác ABD và KBD bằng nhau theo trường hợp (c.g.c).

=> Góc DKB=DAB=90 độ(hai góc tương ứng)

hay DK vuông góc với BC.

c)Ta có:  góc: HAK+HKA=90 độ ( cùng phụ với góc H trong tam giác AHK).

       và góc: KAC+BAK= góc A= 90 độ

mà góc BAK= HKA( tam giác ABK cân tại B).

từ 3 điều này suy ra góc HAK=KAC hay AK là tia phân giác góc HAC.

d) Tam giác ABK có AH, BE là các đường cao giao nhau tại I nên I là trực tâm.

=> KI cũng là đường cao

Hay KI vuông góc với AB.

mà AC vuông góc với AB( do tam giác ABC vuông tại A)

TỪ hai điều này suy ra IK//AC

Tứ giác IKCA có IK//AC nên IKCA là hình thang.

a: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot21\cdot28=294\left(cm^2\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)

mà \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\)

nên \(AH\cdot BC=AB\cdot AC\)

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=21^2+28^2=1225\)

=>\(BC=\sqrt{1225}=35\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{15}=\dfrac{DC}{20}\)

=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)

 mà DB+DC=BC=35cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{35}{7}=5\)

=>\(DB=5\cdot3=15\left(cm\right);DC=4\cdot5=20\left(cm\right)\)

 

a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{4}=\dfrac{CD}{6}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{4}=\dfrac{CD}{6}=\dfrac{AD+CD}{4+6}=\dfrac{AC}{10}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{4}=\dfrac{1}{2}\\\dfrac{CD}{6}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=2\left(cm\right)\\CD=3\left(cm\right)\end{matrix}\right.\)

Vậy: AD=2cm; CD=3cm