Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: ΔHBM vuông tại H(gt)
nên \(\widehat{HBM}+\widehat{HMB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{ABC}+\widehat{IMB}=90^0\)(3)
Ta có: ΔPBC vuông tại P(gt)
nên \(\widehat{PBC}+\widehat{PCB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{IBM}+\widehat{ACB}=90^0\)(4)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)(5)
Từ (3), (4) và (5) suy ra \(\widehat{IBM}=\widehat{IMB}\)
Xét ΔIBM có \(\widehat{IBM}=\widehat{IMB}\)(cmt)
nên ΔIBM cân tại I(Định lí đảo của tam giác cân)
Xét ΔABC có
AM là đường cao ứng với cạnh BC(cmt)
BP là đường cao ứng với cạnh AC(gt)
AM cắt BP tại O(gt)
Do đó: O là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
Suy ra CO\(\perp\)AB
mà MH\(\perp\)AB(gt)
nên CO//MH(Định lí 1 từ vuông góc tới song song)
a) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MB=MC(M là trung điểm của BC)
nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
hay AM⊥BC(đpcm)
b) Xét ΔHBM vuông tại H và ΔKCM vuông tại K có
MB=MC(M là trung điểm của BC)
\(\widehat{HBM}=\widehat{KCM}\)(ΔABC cân tại A)
Do đó: ΔHBM=ΔKCM(cạnh huyền-góc nhọn)
Suy ra: BH=CK(hai cạnh tương ứng)
bạn tự vẽ hình nhé
a) Vì M là trung điểm BC nên AM là đường trung tuyến của tam giác ABC
Mà tam giác ABC cân nên AM là trung tuyến đồng thời đường cao => AM vuông góc BC
b) Tam giác ABC cân nên góc B = góc C
Xét tam giác BHM và tam giác CKM có:
góc BHM= góc CKM= 90 độ
góc B= góc C
BM=CM ( do M là trđiểm BC)
=> tam giác BHM = tam giác CKM (Cạnh huyền - góc nhọn)
=> BH=CK
c) tam giác BHM = tam giác CKM (cmt)=> góc BMH=góc CMK( hai góc tương ứng)
mà BP // MK( do cùng vuông góc với AC)=> góc IBM= góc KMC ( hai góc đồng vị)
=> góc IBM =góc IMB => tam giác IBM cân
a) +) Xét tam giác AMB và tam giác AMC có:
BM=MC (M là trung điểm BC)
AB=AC (tam giác ABC cân tại A)
AM chung
=> Tam giác AMB= tam giác AMC (ccc) (đpcm)
+) Tam giác ABC cân tại A (gt) và M là trung điểm BC(gt)
AM vừa là đường cao vừa là đường trung tuyến của tam giác ABC
=> AM là phân giác \(\widehat{BAC}\)(đpcm)
b) Xét tam giác KMB và tam giác HMC có
MB=MC (M là trung điểm BC)
\(\widehat{BKM}=\widehat{CHM}=90^o\)
\(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
=> Tam giác KMB=tam giác HMC (gcg) (đpcm)
c) Có tam giác KMB= tam giác HMC (cmt)
=> MK=MH (2 cạnh tương ứng (đpcm)
d)
Lời giải:
Đặt \(\angle C=\alpha\Rightarrow \angle B=2\alpha\)
Trên tia đối của của tia $MH$ lấy $L$ sao cho \(MH=ML\)
Xét tam giác $AML$ và $CMH$ có:
\(\left\{\begin{matrix} AM=CM\\ ML=MH\\ \angle AML=\angle CMH\end{matrix}\right.\Rightarrow \triangle AML=\triangle CMH(c.g.c)\)
\(\Rightarrow AL=CH; \angle LAM=\angle HCM\). Mà hai góc này ở vị trí so le trong nên \(AL\parallel CH\Rightarrow \angle LAH=180^0-\angle AHC=90^0\)
Xét tam giác $LAH$ và tam giác $CHA$ có:
\(\left\{\begin{matrix} \text {AH chung}\\ \angle LAH=\angle CHA=90^0\\ LA=CH\end{matrix}\right.\Rightarrow \triangle LAH=\triangle CHA(c.g.c)\)
\(\Rightarrow LH=CA\Leftrightarrow 2MH=2MC\Leftrightarrow MH=MC\)
Do đó tam giác $MHC$ cân tại $M$
\(\Rightarrow \angle MCH=\angle MHC\)
Mà \(\angle MHC=\angle BHN\) (đối đỉnh) nên \(\angle MCH=\angle BHN=\alpha\)
Ta thấy \(\angle ABC=\angle BNH+\angle BHN\)
\(\Leftrightarrow 2\alpha=\angle BNH+\alpha\Leftrightarrow \angle BNH=\alpha\)
Do đó: \(\angle BHN=\angle BNH\). Suy ra tam giác $BNH$ cân tại $B$
Từ đây thu được \(BN=BH\) (đpcm)