Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ADBC có
M la trung điểm chung của AB và DC
nên ADBC là hình bình hành
=>góc ADB=góc ACB
Xét ΔABC có
MN//BC
AM/AB=1/2
=>N là trung điểm của AC
Xét ΔNBC và ΔNEA có
góc NCB=góc NAE
NC=NA
góc BNC=góc ENA
=>ΔNBC=ΔNEA
=>NB=NE
=>AECB là hình bình hành
=>CE=AB=AC=BD và góc AEC=góc ABC
=>góc AEC=góc ADB
Gọi giao của BD và CE là K
Xét ΔKDE có góc KDE=góc KED
nên ΔKDE cân tại K
=>KD=KE
=>KB=KC
=>K nằm trên trung trực của BC
mà AH là trung trực của BC
nên A,H,K thẳng hàng
a) Áp dụng định lí Pytago vào tam giác ABC vuông tại A, ta có:
BC2= AB2 +AC2
=> BC =\(\sqrt{AB^2+AC^2}\)=\(\sqrt{5^2+12^2}\)=13 (cm)
Trả lời (Tự vẽ hình)
a) \(\Delta ABC\)vuông tại A
=> Áp dụng định lý Pi-ta-go
Ta có: \(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=5^2+12^2\)
\(\Rightarrow BC^2=169\)
\(\Rightarrow BC=13\left(cm\right)\)
Vậy BC=13 (cm)
b) Xét \(\Delta ABC\&\Delta ADC\)có:
AC chung (1)
\(\widehat{BAC}\)\(=\widehat{CDA}\)\(\left(=90^o\right)\left(2\right)\)
\(AB=AD\left(gt\right)\left(3\right)\)
(1)(2)(3)\(\Rightarrow\Delta ABC=\Delta ADC\)
Vậy \(\Delta ABC=\Delta ADC\left(đpcm\right)\)
c) Vì \(\Delta ABC=\Delta ADC\)
\(\Rightarrow\hept{\begin{cases}c_1=c_2\left(cmt\right)\\BC=AE\left(gt\right)\\CEA=c_1\end{cases}\Rightarrow\Delta AEC}\)cân
Vậy \(\Delta AEC\)cân (đpcm)
\(\)
c: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
Suy ra: \(\widehat{HDB}=\widehat{KEC}\)
Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HDB}=\widehat{KEC}\)
Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
=>\(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
=>AO⊥BC
=>AO⊥DE
Ta có: ΔADE cân tại A
mà AO là đường cao
nên AO là tia phân giác của góc DAE
e: Ta có: IB=IC
nên I nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,O thẳng hàng
(hình bạn tự vẽ nhé)
a) ta có:tam giác ABC=tam giác DCB (g.c.g)(1)
tam giác BED=tam giác DCB(g.c.g) (2)
Từ (1),(2)→tam giác ABC=tam giác BED (dfcm)
b) Tương tự câu a, ta chứng minh được ΔABC=ΔCDF
→AC = CF suy ra F là trung điểm của AF
c)Tương tự câu b, ta chứng minh được AB=BE,ED=DF
suy ra BF,CE là đường trung tuyến của ΔAEF
suy ra G là trọng tâm
a) Xét ΔBCE và ΔFAE có
EB=EF(gt)
\(\widehat{BEC}=\widehat{FEA}\)(hai góc đối đỉnh)
EC=EA(gt)
Do đó: ΔBCE=ΔFAE(c-g-c)
b) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: DB=DC(hai cạnh tương ứng)
mà D,B,C thẳng hàng(gt)
nên D là trung điểm của BC
Suy ra: \(DB=\dfrac{1}{2}BC\)
mà BC=AF(ΔBCE=ΔFAE)
nên \(DB=\dfrac{1}{2}AF\)(đpcm)