K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2021

Giúp mình với, mình cảm ơn!😢

18 tháng 3 2021

a, Xét tam giác HBA vuông tại H có:

AB2=AH2+BH2(định lí py ta go)

hay 100=AH2+36

=> AH2=64

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

d) Vì AB = AC; BD = CE

mà AB - BD = AD

AC - CE = AE

=> AD = AE

Vì ΔHDE cân

=> H ∈ đường trung trực cạnh DE (1)

Xét ΔADHvàΔAEHcó

AD = AE (cmt)

AH (chung)

DH = HE (cmt)

Do đó: ΔADH=ΔAEH(c−c−c)

=> AD = AE ( hai cạnh tương ứng)

=> ΔADE cân tại A

=> A ∈ đường trung trực cạnh DE (2)

(1); (2) => A,H ∈ đường trung trực cạnh DE

=>AH là đường trung trực cạnh DE

CHÚC BẠN HỌC TỐT

a:Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=> \(BH=\dfrac{BC}{2}=3\left(cm\right)\)

nên AH=4(cm)

b: Ta có: AH là đường trung tuyến ứng với cạnh BC

mà G là trọng tâm của ΔABC

nên A,H,G thẳng hàng

c: XétΔABG và ΔACG có

AB=AC

AG chung

GB=GC

Do đó:ΔABG=ΔACG

Suy ra: \(\widehat{ABG}=\widehat{ACG}\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Ta có: ΔAHB=ΔAHC

nên HB=HC

=>HB=BC/2=6(cm)

Xét ΔAHB vuông tại H có 

\(AB^2=AH^2+BH^{ }\)

hay AH=8(cm)

c: Xét ΔABC có 

M là trung điểm của AC

N là trung điểm của AB

Do đó: MN là đường trung bình

=>MN//BC

d: Xét ΔNCB và ΔMBC có 

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó: ΔNCB=ΔMBC

Suy ra: \(\widehat{GCB}=\widehat{GBC}\)

hay ΔGBC cân tại G

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường trung tuyến

=>H là trung điểm của BC

=>HB=HC=3cm

=>AH=4cm

b: Ta có: AH là đường trung tuyến

mà AG là đường trung tuyến

và AH,AG có điểm chung là A

nên A,H,G thẳng hàng

c: Xét ΔABG và ΔACG có

AB=AC
\(\widehat{BAG}=\widehat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

20 tháng 4 2016

xét tam giác abh và tam giác ach

có       góc h1=góc h2

           ab=ac

            ah chung

=>tam giác abh=tam giác ach(ch.cgv)

=>bh=6cm:2=3cm

áp dụng định lý py-ta-go vào tam giác abh

ta có ab^2=ah^2+bh^2

=>ah^2=ab^2-bh^2

=>ah=4cm

Sửa đề : 

a, Tính độ dài cạnh AC

Áp dụng định lí Pytago trong \(\Delta ABC\perp A\)có :

\(AB^2+AC^2=BC^2\)

\(AC^2=BC^2-AB^2=10^2-6^2=64\)

\(AC=\sqrt{64}=8\)

b, Xét \(\Delta AMC\)và \(\Delta BMD\)có :

\(MB=MA\left(gt\right)\)

\(\widehat{AMC}=\widehat{BMD}\)( 2 góc đối đỉnh )

\(MD=MC\left(gt\right)\)

= > \(\Delta AMC=\Delta DMB\)

= > DB = AC = 8 cm ( 2 cạnh tương ứng )

c, thiếu đề bài

NM
6 tháng 3 2022

ta có : 

undefined

c. mình đâu có thấy điểm K nào đâu nhỉ

19 tháng 5 2022

Vì G là trọng tâm ΔABC

⇒AG=2323 AH=2323 18=12(cm)

Mà AG=2GH

⇒GH=AG2AG2 =122122 =6(cm)

BH=HC(do AH là trung tuyến BC)

⇒BH=HC=BC2BC2 =162162 =8(cm)

Xét ΔGHC có:

   GH²+HC²=GC²(Định lí Pi-ta-go)

⇒6²+8²=GC²

⇒36+64=GC²

⇒GC²=100=10²

⇒GC=10(cm)

Mà GC=2GI

⇒GI=GC2GC2 =102102=5(cm)

Vậy độ dài cạnh GI là 5cm

d)Ta có:

Theo b) GI=GK

⇒ΔIGK là tam giác cân tại G

{GC=2GIGB=2GK{GC=2GIGB=2GK

Mà GI=GK

⇒GC=GB

⇒ΔGBC là tam giác cân tại G

Ta có:

∠KIG=∠IKG=180∗−∠IGK2180∗−∠IGK2

∠GBC=∠GCB=180∗−∠BGC2180∗−∠BGC2

Mà ∠IGK=∠BGC(đối đỉnh)

⇒∠KIG=∠GCB

Mà 2 góc ở vị trí so le trong 

⇒IK=BC

19 tháng 5 2022

Tham khảo

Anser reply image