Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(BD< CE\left(gt\right)\)
=> \(\frac{2}{3}BD< \frac{2}{3}CE\) (tính chất trọng tâm của tam giác)
Hay \(BG< CG.\)
Trong \(\Delta BDC\) có \(\widehat{GBC}\) đối diện với cạnh \(GC;\widehat{GCB}\) đối diện với cạnh \(GB.\)
Mà \(GB< GC\left(cmt\right)\)
=> \(\widehat{GCB}< \widehat{GBC}\) (theo quan hệ giữa góc và cạnh đối điện trong tam giác)
Chúc bạn học tốt!
A B C G D E
BD < CE => 2/3 . BD < 2/3 . CE (tính chất trọng tâm tam giác ) hay BG < CG
Trong tam giác BDC: góc GBC đối diện với cạnh GC; góc GCB đối diện với cạnh GB mà GB < GC
=> góc GCB < GBC
Hình bạn tự vẽ nha
a)Xét \(\Delta ABC\) có:
\(\left\{{}\begin{matrix}BD;CE\\BD\cap CE=\left\{G\right\}\end{matrix}\right.\)là đường trung tuyến của \(\Delta ABC\)
=>G là trọng tâm của \(\Delta ABC\)
b)-Có G là trọng tâm của \(\Delta ABC\)
=>\(\left\{{}\begin{matrix}BG=\dfrac{2}{3}BD\\CG=\dfrac{2}{3}CE\\CE>BD\end{matrix}\right.\)
=>BG>CG
Xét \(\Delta BGC\) có:
BG>CG
=>\(\widehat{GBC}>\widehat{GCB}\) (Theo quan hệ góc và cạnh trong tam giác)
Xét tgiac ACE. ADB:
góc A chung
D=E=90¤
AB=AC
=> Tgiac ACE==ABD (c-h-g-n)
=> BD=CE ( 2ctu) và AE=AD ( sử dụng cho cậu c))
b) BD giao CE tại G=> G là trực tâm tgiac ABC
=> AG vuông góc với BC
c) Xét 2 t giác AEG=ADG ( c-h-c-g-v)
=>GE=GD(2ctu) =>GB=GC=> tgiac GBC cân tại B
A B C G D E
Giải:
a, G là giao của BD, CE
Mà BD, CE là 2 đường trung tuyến của t/g ABC
=> G là trọng tâm của t/g ABC ( đpcm )
b, Ta có: \(BD< CE\Rightarrow\dfrac{2}{3}BD< \dfrac{2}{3}CE\Rightarrow GB< GC\)
\(\Rightarrow\widehat{GCB}< \widehat{GBC}\left(đpcm\right)\)
Vậy...
Xét ΔABC có
BD,CE là các đường trung tuyến
BD cắt CE tại G
Do đó: G là trọng tâm của ΔBAC
=>\(GB=\dfrac{2}{3}BD;GC=\dfrac{2}{3}CE\)
mà BD<CE
nên GB<GC
Xét ΔGBC có GB<GC
mà \(\widehat{GCB};\widehat{GBC}\) lần lượt là góc đối diện của các cạnh GB,GC
nên \(\widehat{GCB}< \widehat{GBC}\)