Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=2000 nên x+1=2001
\(P\left(x\right)=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^5-x^4-x^5+x^4+x^3-x^3-x^2+x^2+x-1\)
=x-1=1999
Xét đa thức \(F\left(x\right)=ax^2+bx+c\)
\(F\left(0\right)=c=2016\)
\(F\left(1\right)=a+b+c=2017\Rightarrow a+b=1\) (1)
\(F\left(-1\right)=a-b+c=2018\Rightarrow a-b=2\) (2)
Từ (1), (2)
\(\Rightarrow\hept{\begin{cases}a+b-a+b=-1\\a+b+a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}2b=-1\\2a=3\end{cases}}\Rightarrow\hept{\begin{cases}b=-0,5\\a=1,5\end{cases}}\)
\(\Rightarrow F\left(2\right)=1,5.2^2-0,5.2+2016=2021\)
Vậy \(F\left(2\right)=2021\).
Ta có
\(F\left(0\right)=2016\)
\(\Leftrightarrow a\cdot0^2+b\cdot0+c=2016\)
\(\Leftrightarrow0+0+c=2016\)
\(\Leftrightarrow c=2016\)
\(F\left(1\right)=2016\)
\(\Leftrightarrow a\cdot1^2+b\cdot1+c=2017\)
\(\Leftrightarrow a+b+c=2017\)
\(\Leftrightarrow a+b+2016=2017\)
\(\Leftrightarrow a+b=1\) \(\left(1\right)\)
\(F\left(-1\right)=2018\)
\(\Leftrightarrow a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=2018\)
\(\Leftrightarrow a-b+c=2018\)
\(\Leftrightarrow a-b+2016=2018\)
\(\Leftrightarrow a-b=2\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a=\left(1+2\right)\div2=3\div2=1.5\)
\(\Rightarrow b=1-1.5=-0.5\)
Vậy \(F\left(x\right)=1.5x^2-0.5x+2016\)
\(\Leftrightarrow F\left(2\right)=1.5\cdot2^2-0.5\cdot2+2016\)
\(=1.5\cdot4-0.5\cdot2+2016\)
\(=6-1+2016=2021\)
Vậy \(F\left(2\right)=2021\)
nhớ k nha
f(2016)=20168 - 2017*20167 +2017*20166 - 2017*20165 +...+2017*20162 - 2017*2016+ 2018
=20168 -( 20168 + 2016) + (20167+2016) - (20166 + 2016)+....+20163+2016 -( 20162 + 2016)+2018
=2018
Thay x=2016 thì 2017=x+1 và 2018=x+2 Do đó
\(f\left(x\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-...-\left(x+1\right)x\)\(+x+2\)
\(=x^8-x^8-x^7+x^7+x^6-...+x^2-x^2-x+x+2\)
\(=2\)
Với x = 0, ta có:
02016. f(0-2016) = (0 - 2017) . f(0)
=> 0. f(-2016) = - 2017. f(0)
=> 0 = - 2017. f(0) => f(0) = 0 (1)
Với x = 2017, ta có:
20172016 . f(2017 - 2016) = (2017 -2017) . f(2017)
=> 20172016 . f(1) = 0. f(2017)
=>20172016 . f(1) = 0 => f(1) = 0 (2)
(1), (2) => (đpcm)
Sửa lại f(x) = \(2016x^4-32\left(25k+2\right)x^2+k^2-100\). Và đề là tìm k.
f(x) có đúng 3 nghiệm phân biệt <=> f(x) có 1 nghiệm dương và 1 nghiệm bằng 0
Do đó: f(0) = 0
<=> \(k^2-100=0\)
<=> k = 10 hoặc k = -10
Với k = 10 thay vào ta có: \(f\left(x\right)=2016x^4-8064x^2\) có 3 nghiệm => k = 10 thỏa mãn
Với k = -10 thay vào ta có: \(f\left(x\right)=2016x^4+7936x^2\) có 1 nghiệm => k = -10 loại
Vậy k = 10
Cô ơi, em nghĩ là f(x) có 1 nghiệm bằng 0 và 2 nghiệm nguyên đối nhau (khác 0) chứ ạ, sao lại 1 nghiệm dương,
1.4m+7n=0
=>4m=-7n
=>mx2-4m=0
=>m(x2-4)=0
=>m=0 hoặc x=2 hoặc x=-2