K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

áp dụng định lý nội suy newton ta có a^1+a^2(x-1)+a^3(x-1)(x-2)+a^4(x-1)(x-2)(x-3)+a^5(x-a)(x-2)(x-3)(x-4)

thay x=1 

p(x)=1+a^2(x-1)+a^3(x-1)(x-2)+a^4(x-1)(x-2)(x-3)+a^5(x-1)(x-2)(x-3)(x-4)

thay x=2

p(x)=1+3(x-1)+a^3(x-1)(x-2)+a^4(x-1)(x-2)(x-3)+a^5(x-1)(x-2)(x-3)(x-4)

thay x =3 

p(x)=1+3(x-1)+5(x-1)(x-2)+a^4(x-1)(x-2)(x-3)+a^5(x-1)(x-2)(x-3)(x-4)

thay x=4 

p(x)=1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)+a^5(x-1)(x-2)(x-3)(x-4)

thay x=5

p(x)=1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)-1(x-1)(x-2)(x-3)(x-4)

=>đa thức p(x) ban đầu có dạng :1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)-1(x-1)(x-2)(x-3)(x-4)

 nên tại 

p(6)=1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)-1(x-1)(x-2)(x-3)(x-4)+6(x-1)(x-2)(x-3)(x-4)(x-5)=21

   VẬY P(6)=21

 p(7)=1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)-1(x-1)(x-2)(x-3)(x-4)+6(x-1)(x-2)(x-3)(x-4)(x-5)+7(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)=28

 VẬY P(7)=28

               XONG RỒI ĐÓ BẠN !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 11 2021

Answer:

\(f\left(1\right)=2\Rightarrow1+a+b+c+d+e=2\)

\(f\left(2\right)=5\Rightarrow32+16a+8b+4c+2d+e=5\)

\(f\left(3\right)=10\Rightarrow243+81a+27b+9c+3d+e=10\)

\(f\left(4\right)=17\Rightarrow1024+256a+64b+16c+4d+e=17\)

\(f\left(5\right)=26\Rightarrow3125+625a+125b+25c+5d+e=26\)

Rút gọn các ẩn đi thì được:

\(a=-15\)

\(b=85\)

\(c=-224\)

\(d=274\)

\(e=-119\)

\(\Rightarrow f\left(x\right)=x^5-15x^4+85x^3-224x^2+274x-119\)

NV
18 tháng 6 2019

Đặt \(Q\left(x\right)=P\left(x\right)-x^2\Rightarrow Q\left(x\right)\) có bậc tối đa là 5

Ta có \(Q\left(1\right)=P\left(1\right)-1^2=0\)

Tương tự \(Q\left(2\right)=Q\left(3\right)=Q\left(4\right)=Q\left(5\right)=0\)

\(\Rightarrow Q\left(x\right)\) có 5 nghiệm \(x=\left\{1;2;3;4;5\right\}\)

\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)\)

\(Q\left(x\right)=P\left(x\right)-x^2\Rightarrow P\left(x\right)=Q\left(x\right)+x^2\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+x^2\)

\(\Rightarrow P\left(6\right)=156\) ; \(P\left(7\right)=769\)

NV
17 tháng 6 2019

Xét \(Q\left(x\right)=P\left(x\right)-x^2\)

Thay \(x=1\Rightarrow Q\left(1\right)=P\left(1\right)-1^2=0\)

\(x=2\Rightarrow Q\left(2\right)=P\left(2\right)-2^2=0\)

Tương tự \(Q\left(3\right)=0\) ; \(Q\left(4\right)=0\)

\(\Rightarrow Q\left(x\right)\) có ít nhất 4 nghiệm \(x=\left\{1;2;3;4\right\}\)

\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-k\right)\) với \(k\) là số thực bất kì

\(Q\left(x\right)=P\left(x\right)-x^2\Rightarrow P\left(x\right)=Q\left(x\right)+x^2\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-k\right)+x^2\)

Do \(P\left(5\right)=2\Rightarrow\left(5-1\right)\left(5-2\right)\left(5-3\right)\left(5-4\right)\left(5-k\right)+5^2=2\)

\(\Leftrightarrow24\left(5-k\right)=-23\Rightarrow k=\frac{143}{24}\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-\frac{143}{24}\right)+x^2\)

\(\Rightarrow P\left(6\right)=41\) ; \(P\left(7\right)=424\)

29 tháng 6 2016

ai giải dc ko