Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng định lý nội suy newton ta có a^1+a^2(x-1)+a^3(x-1)(x-2)+a^4(x-1)(x-2)(x-3)+a^5(x-a)(x-2)(x-3)(x-4)
thay x=1
p(x)=1+a^2(x-1)+a^3(x-1)(x-2)+a^4(x-1)(x-2)(x-3)+a^5(x-1)(x-2)(x-3)(x-4)
thay x=2
p(x)=1+3(x-1)+a^3(x-1)(x-2)+a^4(x-1)(x-2)(x-3)+a^5(x-1)(x-2)(x-3)(x-4)
thay x =3
p(x)=1+3(x-1)+5(x-1)(x-2)+a^4(x-1)(x-2)(x-3)+a^5(x-1)(x-2)(x-3)(x-4)
thay x=4
p(x)=1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)+a^5(x-1)(x-2)(x-3)(x-4)
thay x=5
p(x)=1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)-1(x-1)(x-2)(x-3)(x-4)
=>đa thức p(x) ban đầu có dạng :1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)-1(x-1)(x-2)(x-3)(x-4)
nên tại
p(6)=1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)-1(x-1)(x-2)(x-3)(x-4)+6(x-1)(x-2)(x-3)(x-4)(x-5)=21
VẬY P(6)=21
p(7)=1+3(x-1)+5(x-1)(x-2)+7(x-1)(x-2)(x-3)-1(x-1)(x-2)(x-3)(x-4)+6(x-1)(x-2)(x-3)(x-4)(x-5)+7(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)=28
VẬY P(7)=28
XONG RỒI ĐÓ BẠN !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Xét \(Q\left(x\right)=P\left(x\right)-x^2\)
Thay \(x=1\Rightarrow Q\left(1\right)=P\left(1\right)-1^2=0\)
\(x=2\Rightarrow Q\left(2\right)=P\left(2\right)-2^2=0\)
Tương tự \(Q\left(3\right)=0\) ; \(Q\left(4\right)=0\)
\(\Rightarrow Q\left(x\right)\) có ít nhất 4 nghiệm \(x=\left\{1;2;3;4\right\}\)
\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-k\right)\) với \(k\) là số thực bất kì
Mà \(Q\left(x\right)=P\left(x\right)-x^2\Rightarrow P\left(x\right)=Q\left(x\right)+x^2\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-k\right)+x^2\)
Do \(P\left(5\right)=2\Rightarrow\left(5-1\right)\left(5-2\right)\left(5-3\right)\left(5-4\right)\left(5-k\right)+5^2=2\)
\(\Leftrightarrow24\left(5-k\right)=-23\Rightarrow k=\frac{143}{24}\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-\frac{143}{24}\right)+x^2\)
\(\Rightarrow P\left(6\right)=41\) ; \(P\left(7\right)=424\)
Đặt \(Q\left(x\right)=P\left(x\right)-x^2\Rightarrow Q\left(x\right)\) có bậc tối đa là 5
Ta có \(Q\left(1\right)=P\left(1\right)-1^2=0\)
Tương tự \(Q\left(2\right)=Q\left(3\right)=Q\left(4\right)=Q\left(5\right)=0\)
\(\Rightarrow Q\left(x\right)\) có 5 nghiệm \(x=\left\{1;2;3;4;5\right\}\)
\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)\)
Mà \(Q\left(x\right)=P\left(x\right)-x^2\Rightarrow P\left(x\right)=Q\left(x\right)+x^2\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+x^2\)
\(\Rightarrow P\left(6\right)=156\) ; \(P\left(7\right)=769\)
Bài 4.
a) 3xy2 - 45x2y = 3xy( y - 15x )
b) 25y2 - 4x2 + 4x - 1
= 25y2 - ( 4x2 - 4x + 1 )
= ( 5y )2 - ( 2x - 1 )2
= ( 5y - 2x + 1 )( 5y + 2x - 1 )
c) x2 - 5x + xy - 5y
= x( x - 5 ) + y( x - 5 )
= ( x - 5 )( x + y )
d) x2 - 8x - 33
= x2 + 3x - 11x - 33
= x( x + 3 ) - 11( x + 3 )
= ( x + 3 )( x - 11 )
Bài 5.
a) A = ( x - 2 )3 - x2( x - 4 ) + 8
= x3 - 6x2 + 12x - 8 - x3 + 4x2 + 8
= -2x2 + 12x
B = ( x2 - 6x + 9 ) : ( x - 3 ) - x( x + 7 ) - 9
= ( x - 3 )2 : ( x - 3 ) - x2 - 7x - 9
= x - 3 - x2 - 7x - 9
= -x2 - 6x - 12
b) Với x = -1 thì A = -2.(-1)2 + 12.(-1) = -2 - 12 = -14