Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.1
a) Áp dụng định lý Bezout:
\(P\left(x\right)⋮2x+3\)
\(\Rightarrow P\left(\frac{-3}{2}\right)=0\)
hay \(6.\frac{-27}{8}-7.\frac{9}{4}-16.\frac{-3}{2}+m=0\)
\(\Leftrightarrow\frac{-81}{4}-\frac{63}{4}+24+m=0\)
\(\Rightarrow m=12\)
Vậy m = 12
a/\(P\left(x\right)=\left(6x^3+9x^2\right)-\left(16x^2+24x\right)+\left(8x+m\right)\)
\(\Leftrightarrow P\left(x\right)=3x^2\left(2x+3\right)-8x\left(2x+3\right)+\left(8x+m\right)⋮2x+3\)
\(\Rightarrow8x+m⋮2x+3\). Chỉ có thể \(8x+m=4\left(2x+3\right)\Rightarrow m=12\)
b/Áp dụng Betzout ta có
\(x=\frac{2}{3}\) là nghiệm của đa thức chia nên \(P\left(\frac{2}{3}\right)=r\) ( với r là đa thức bậc 0, vì đa thức chia bậc 1). Thế x=2/3 đc dư
-\(P\left(x\right)=3x^2\left(2x+3\right)-8x\left(2x+3\right)+4\left(2x+3\right)=\left(2x+3\right)\left(3x^2-8x+4\right)=\left(2x+3\right)\left(3x\left(x-2\right)-2\left(x-2\right)\right)=\left(2x+3\right)\left(3x-2\right)\left(x-2\right)\)
Ta nhận thấy quy luật \(P\left(1\right)=1,P\left(2\right)=4,P\left(4\right)=16,P\left(5\right)=25\Rightarrow P\left(x\right)=x^2\)
Vậy \(P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-5\right)+x^2\)
Thay x=6,7 rồi tính
Đa thức bị chia bậc 4, đa thức chia bậc 2 nên đa thức thương bậc 2, hạng tử bậc cao nhất là: x4 : x2 = x2.
Gọi thương là x2 + mx + n, ta có:
A(x) = x4 - 3x3 + ax + b = (x2 - 3x + 4)(x2 + mx + n)
= x4 + mx3 + nx2 - 3x3 - 3mx2 - 3nx + 4x2 + 4mx + 4n
= x4 + (m - 3)x3 + (n - 3m + 4)x2 - (3n - 4m)x + 4n
\(\Leftrightarrow\)m - 3 = -3 \(\Leftrightarrow\) m = 0
n - 3m + 4 = 0 n = -4
3n - 4m = -a a = 12
4n = b b = 16
Vậy a = 12; b = 16
bạn chia ra nó sẽ rư (a-12)x+16+b. để A chia hết cho B thì (a-12)x+16+b=0. Suy ra a-12=0;b+16=0 suy ra a=12;b=16
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
a/ \(2x+3=0\Rightarrow x=-\frac{3}{2}\)
Để \(P\left(x\right)⋮\left(2x+3\right)\Leftrightarrow P\left(-\frac{3}{2}\right)=0\)
\(\Leftrightarrow m-12=0\Rightarrow m=12\)
\(\Rightarrow P\left(x\right)=6x^3-7x^2-16x+12\)
b/ \(3x-2=0\Rightarrow x=\frac{2}{3}\)
\(P\left(\frac{2}{3}\right)=0\)
\(\Rightarrow P\left(x\right)⋮\left(3x-2\right)\) dư 0 hay \(P\left(x\right)\) chia hết \(3x-2\)
\(6x^3-7x^2-16x+12=\left(2x+3\right)\left(3x-2\right)\left(x-2\right)\)