K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

Đặt \(f\left(x\right)=10x\)

Khi đó ta có \(f\left(1\right)=10=P\left(1\right)\)\(f\left(2\right)=20=P\left(2\right)\)\(f\left(3\right)=30=P\left(3\right)\)

Do đó \(P\left(x\right)-f\left(x\right)=g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

\(\Rightarrow P\left(x\right)=10+g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

Vì \(P\left(x\right)\)là đa thức bậc 4 mà \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)là đa thức bậc 3 nên \(g\left(x\right)\)là đa thức bậc 1 hay \(g\left(x\right)=x+n\)

Vậy \(P\left(x\right)=\left(x+n\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)+10\)

\(\Rightarrow P\left(12\right)=\left(12+n\right)\left(12-1\right)\left(12-2\right)\left(12-3\right)=\left(n+12\right).11.10.9=990\left(n+12\right)\)

\(=990n+11880\)

Và \(P\left(-8\right)=\left(-8+n\right)\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)=\left(n-8\right)\left(-9\right)\left(-10\right)\left(-11\right)\)\(=-990\left(n-8\right)=-990n+7920\)

Vậy \(\frac{P\left(12\right)+P\left(-8\right)}{10}+25=\frac{990n+11880-990n+7920}{10}+25=\frac{19800}{10}+25=2005\)

21 tháng 7 2017

bài 2:

\(A=\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)

\(=\left(c+b+a-2c\right)^3+\left(c+a+b-2b\right)^3\)

\(=\left(-2c\right)^3+\left(-2b\right)^3=-8\left(b+c\right)\)

sao nữa nhỉ :v

22 tháng 7 2017

rồi sao nua

1 tháng 10 2017

Câu a :

Theo giả thiết bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}P\left(1\right)=1^4+a.1^3+b.1^2+c.1+d=1\\P\left(2\right)=2^4+a.2^3+b.2^2+c.2+d=4\\P\left(3\right)=3^4+a.3^3+b.3^2+c.3+d=7\\P\left(4\right)=4^4+a.4^3+b.4^2+c.4+d=10\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c+d=0\\8a+4b+2c+d=-12\\27a+9b+3c+d=-74\\64a+16b+4c+d=-246\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-7a-3b-c=12\\-26a-8b-2c=74\\-63a-15b-3c=246\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=0-\left(-10+35-47\right)=22\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=22\end{matrix}\right.\)

1 tháng 10 2017

Câu b ạ

30 tháng 10 2017

xuống bỏ phiếuchấp nhận

Hai nhận xét, để tránh hầu hết các tính toán:

  • Các đa thức có nguồn gốc từ 1 , 2 và 3 , vì thế có tồn tại một đa thức Q sao cho P(x)-10x=(x-1)(x-2)(x-3)Q(x) .P(x)10xP(x)-10x112233QQP(x)10x=(x1)(x2)(x3)Q(x)P(x)-10x=(x-1)(x-2)(x-3)Q(x)
  • Các đa thức có bằng 4 và hệ số dẫn 1 , do đó Q(x)=x+z đối với một số liên tục chưa biết zcó giá trị sẽ là không thích hợp.P(x)10xP(x)-10x4411Q(x)=x+zQ(x)=x+zzz

Như vậy, , tức là P(12)+P(-8)=104+P(12)+P(8)=10(128)+11109(12+z)+91011(8z)P(12)+P(-số 8)=10(12-số 8)+11109(12+z)+91011(số 8-z) .P(12)+P(8)=104+11109(12+z+8z)=40+99020=19840

30 tháng 10 2017

cái này bạn thay vào giải hệ 4 ẩn cx đc