K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

Ta có : \(\left\{{}\begin{matrix}ax^2+bx+3=\left(x+2\right).Q\left(x\right)-1\\ax^2+bx+3=\left(x-1\right).Q\left(x\right)+8\end{matrix}\right.\)

Theo bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}4a-2b+3=-1\\a+b+3=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=4\end{matrix}\right.\)

25 tháng 11 2019

Áp dụng định lí Bezout :

\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)

\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)

\(\Rightarrow\hept{\begin{cases}4a-2b=-4\\a+b=5\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=4\end{cases}}}\)

27 tháng 10 2021

p(x)=\(x^3+ã^2+bx+c\)

với x=1 thì p(1)=0 hay

\(1+a+b+c=0\)

p(x) \(chia\)p(x-2) dư 6

với x=2 =>\(4a+2b+c+8=6< =>4a+2b+c=-2\)

tương tự với cái còn lại

xong bạn giải hệ phương trình bậc nhất ba ẩn là xong

3 tháng 10 2021

\(f\left(x\right)=ax^2+bx+2020\\ \Leftrightarrow f\left(\sqrt{3}-1\right)=a\left(4-2\sqrt{3}\right)+b\left(\sqrt{3}-1\right)+2020=2021\\ \Leftrightarrow4a-2a\sqrt{3}+b\sqrt{3}-b-1=0\\ \Leftrightarrow\left(4a-b-1\right)-\sqrt{3}\left(2a-b\right)=0\\ \Leftrightarrow4a-b-1=\sqrt{3}\left(2a-b\right)\)

Vì a,b hữu tỉ nên \(4a-b-1;2a-b\) hữu tỉ

Mà \(\sqrt{3}\) vô tỉ nên \(\sqrt{3}\left(2a-b\right)\) hữu tỉ khi \(2a-b=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a-b-1=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(1+\sqrt{3}\right)=\dfrac{1}{2}\left(4+2\sqrt{3}\right)+1+\sqrt{3}+2020=2023+2\sqrt{3}\)

18 tháng 3 2017

ta có P(x) = (x-1)(x-2)(x-3) + R(x)                                   (   R(x) = mx^2 + nx + i)
 => P(1) = m . 1 + n.1 + i = -15
=> P(2) = m . 2^2 + n . 2 + i = -15
=> P(3) = m . 3^2 + n . 3 + i = -9

còn lại tự làm nhé

NV
25 tháng 11 2019

Áp dụng định lý Bezout:

\(P\left(-2\right)=-1\Rightarrow4a-2b+3=-1\Rightarrow4a-2b=-4\)

\(P\left(1\right)=8\Rightarrow a+b+3=8\Rightarrow a+b=5\)

\(\Rightarrow\left\{{}\begin{matrix}4a-2b=-4\\a+b=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\end{matrix}\right.\)

NV
25 tháng 11 2019

Định lý về đa thức của lớp 8

Nếu \(P\left(x\right)\) chia \(x-x_0\) có số dư là \(a\) thì \(P\left(x_0\right)=a\)

Ví dụ ở bài trên \(P\left(x\right)\) chia \(x-\left(-2\right)\)\(-1\) nên \(P\left(-2\right)=-1\)

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!