Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{P= ax⁴y³ +10xy² +4y³ -2x⁴y³ -3xy²+bx³y⁴}\)
\(\text{P=}\text{ax⁴y³-2x⁴y³ +bx³y⁴ +10xy² -3xy² +4y³}\)
\(\text{P=}\text{(a-2)x⁴y³ + bx³y⁴ +(10-3)xy² +4y³}\)
\(\text{P=}\text{ (a-2)x⁴y³ + bx³y⁴ +7xy² +4y³}\)
\(\text{Để P có bậc 3 thì:}\)
\(a-2=0\Leftrightarrow a=2\)
\(b=0\Leftrightarrow b=0\)
\(\text{Vậy a=2,b=0 thì P có bậc là 3}\)
a: \(M=3x^5y^3-3x^5y^3-4x^4y^3+2x^4y^3+7xy^2=-2x^4y^3+7xy^2\)
b: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2=x^3+x^2+x+2\)
c: \(M\left(x\right)=-3x^4y^3+10+xy\)
\(a)M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(M=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)
\(M=-2x^4y^3+7xy^2\)
\(\text{Bậc là:}7\)
\(b)P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(P\left(x\right)=\left(2x^3-x^3\right)+\left(-2x+3x\right)+x^2+2\)
\(P\left(x\right)=x^3+x+x^2+2\)
\(P\left(x\right)=x^3+x^2+x+2\)
\(\text{Bậc là:}3\)
\(M=\left(6x^6y-6x^6y\right)+\left(x^4y^3-4x^4y^3\right)+10+xy\)
\(M=-3x^4y^3+10+xy\)
\(\text{Bậc là:}7\)
Ta có: \(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)
\(=\left(4+a\right)x^5y^2+\left(-3+7\right)x^3y\)
\(=\left(4+a\right)x^5y^2+4x^3y\)
Vì đa thức có bậc là 4
mà \(x^5y^2\)có bậc là 7
nên : \(4+a=0\)<=> a = -4
Khi đó đa thức bằng: \(4x^3y\) có bậc là 4
Vậy a = -4
Nguyễn Linh Chi hôm qua cô con HD trình bày kiểu này :
\(4x^5y^2-3x^3y+7x^3y+ax^5y^2\)
\(=\left(4x^5y^2+ax^5y^2\right)+\left(-3x^3y+7x^3y\right)\)
\(=\left(4+a\right)x^5y^2+4x^3y\)
đến đây ta nhận thấy 4x3y có số bậc là 4 . Vì vậy (4+a)x5y2 không tồn tại hay 4+a=0
\(4+a=0\Rightarrow a=-4\)
M = (3x5y3 – 3x5y3) + (- 4x4y3 + 2x4y3) + 7xy2
= – 2x4y3 + 7xy2
– Bậc của đa thức M là 7
k cho mk nha
ta có :
\(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3=-2x^4y^3+7xy^2\)
Bậc của M là \(4+3=7\)
tại x=1 và y=-1 ta có \(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2=2+7=9\)
\(P=ax^4y^3+10xy^2+4y^3-2x^4y^3-3xy^2+bx^3y^4\)
\(=\left(ax^4y^3-2x^4y^3\right)+bx^3y^4+7xy^2+4y^3\)
\(=\left(a-2\right)x^4y^3+bx^3y^4+7xy^2+4y^3\)
Ta thấy: \(4+3=3+4=7\)
mà P phải có bậc là 3 \(\Rightarrow\hept{\begin{cases}a-2=0\\b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\end{cases}}\)
Vậy \(x=2\)và \(b=0\)