K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mấy cái này mk kho bít sorry!!!!!!253564656464646474748949474626515466575757575665555

9 tháng 5 2022

easy

10 tháng 5 2021

Gọi nghiệm nguyên của P(x) là: k

ta có: ak3+bk2+ck+d=0ak3+bk2+ck+d=0

k.(ak2+bk+k)=−dk.(ak2+bk+k)=−d( *)

ta có: P(1)=a+b+c+dP(1)=a+b+c+d

P(0)=dP(0)=d

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> k3−1;k2−1;k−1k3−1;k2−1;k−1là các số chẵn

⇒a(k3−1)+b(k2−1)+c(k−1)⇒a(k3−1)+b(k2−1)+c(k−1) là số chẵn

=(ak3+bk2+ck)−(a+b+c)=(ak3+bk2+ck)−(a+b+c)

mà a+b+c là số chẵn

⇒ak3+bk2+c⇒ak3+bk2+c là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

1 tháng 6 2021

Xét đa thức P(x)=ax3+bx2+cx+dP(x)=ax3+bx2+cx+d

⇒P(0)=d⇒P(0)=d

      P(1)=ax+bx+c+dP(1)=ax+bx+c+d

Giả sử tồn tại tại số nguyên kk là nghiệm của đa thức P(x)P(x) nên P(k)=0P(k)=0

+) Với k là số chẵn

⇒P(k)−d=ak3+bk3+ck⇒P(k)-d=ak3+bk3+ck là số chẵn

Mà P(k)−d=P(k)−P(0)=−P(0)P(k)-d=P(k)-P(0)=-P(0) là số chẵn

⇒k⇒k là số chẵn  (loại)   (1)

+) Với k là số lẻ

⇒P(k)−P(1)=a(k3−1)+b(k2−1)+c(k−1)⇒P(k)-P(1)=a(k3-1)+b(k2-1)+c(k-1)

Vì kk là số lẻ nên k3−1;k2−1;k−1k3-1;k2-1;k-1 là các số chẵn

⇒P(k)−P(1)⇒P(k)-P(1) là số chẵn

⇒P(1)⇒P(1) là số chẵn

⇒k⇒k là số lẻ  (loại)   (2)

Từ (1), (2)

⇒⇒ Không tồn tại số nguyên kk sao cho P(k)=0P(k)=0

⇒P(x)⇒P(x) không thể có nghiệm là số nguyên   (đpcm)

10 tháng 5 2021

Gọi nghiệm nguyên của P(x) là: k

ta có: ak3+bk2+ck+d=0ak3+bk2+ck+d=0

k.(ak2+bk+k)=−dk.(ak2+bk+k)=−d( *)

ta có: P(1)=a+b+c+dP(1)=a+b+c+d

P(0)=dP(0)=d

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> k3−1;k2−1;k−1k3−1;k2−1;k−1là các số chẵn

⇒a(k3−1)+b(k2−1)+c(k−1)⇒a(k3−1)+b(k2−1)+c(k−1) là số chẵn

=(ak3+bk2+ck)−(a+b+c)=(ak3+bk2+ck)−(a+b+c)

mà a+b+c là số chẵn

⇒ak3+bk2+c⇒ak3+bk2+c là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

5 tháng 10 2016

Thay x = 0 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
   0.P( 0 + 2 ) = (4 - 9). P(0) suy ra 5. P(0) = 0 hay P(0) = 0. Vậy x = 0 là nghiệm của đa thức.
Thay x = 3 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
   3.P(5) = (9 - 9 ).P(3) suy ra P(5 ) = 0 . Vậy x = 5 là nghiệm của đa thức P(x).
Tương tự với x = - 3 ta có:
-3. P(-1) = (9 - 9). P(-3) suy ra P(-1) = 0. Vậy x = -1 cũng là nghiệm của đa thức P(x).
Vậy đa thức P(x) có ít nhất 3 nghiệm là: 0; 5; -1.
b, Giả sử P(x) có nghiệm nguyên là a. Khi đó sẽ có đa thức g(x) để: P(x) = g(x) (x - a).
    P(1) = (1-a).g(1) là một số lẻ suy ra 1- a là số lẻ .Vậy a chẵn.
   P(0) = a  .g(0) là một số lẻ , suy ra a là số chẵn.
a không thể vừa là số lẻ, vừa là số chẵn. Ta có mâu thuẫn. 
Vậy ta có ĐPCM.
  

11 tháng 4 2018

Bùi Thị Vân ơi, khúc đầu câu a) là thay x=0 vài x.P(x+2) = (x^2-9) P(x) mà bạn thay bị sai thì phải.Bạn xem lại giúp mình

22 tháng 4 2018

Gọi nghiệm nguyên của P(x) là: k

ta có: \(ak^3+bk^2+ck+d=0\)

\(k.\left(ak^2+bk+k\right)=-d\)( *)

ta có: \(P_{\left(1\right)}=a+b+c+d\)

\(P_{\left(0\right)}=d\)

mà P(1); P(0) là các số lẻ

=> a+b+c+d và d là các số lẻ

mà d là số lẻ

=> a+b+c là số chẵn

Từ (*) => k thuộc Ư(d)

mà d là số lẻ

=> k là số lẻ

=> \(k^3-1;k^2-1;k-1\)là các số chẵn

\(\Rightarrow a\left(k^3-1\right)+b\left(k^2-1\right)+c\left(k-1\right)\) là số chẵn

\(=\left(ak^3+bk^2+ck\right)-\left(a+b+c\right)\)

mà a+b+c là số chẵn

\(\Rightarrow ak^3+bk^2+c\) là số chẵn

Từ (*) => d là số chẵn ( vì d là số lẻ)

=> P(x) không thể có nghiệm nguyên

6 tháng 4 2018

Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
     Tính chẵn lẻ của bx2 phụ thuộc vào b
     Tính chẵn lẻ của cx phụ thuộc vào c
     d là số lẻ 
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên 
Hơi khó hỉu chút nhé ahihi
 

4 tháng 5 2018

Sai rồi bạn ơi

AH
Akai Haruma
Giáo viên
14 tháng 6 2021

Lời giải:

$P(0)=d$ lẻ

$P(1)=a+b+c+d$ lẻ, mà $d$ lẻ nên $a+b+c$ chẵn. Do đó 3 số này có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn.

Giả sử $P(x)$ có nghiệm nguyên $m$. Khi đó:

$P(m)=am^3+bm^2+cm+d$

Nếu $m$ chẵn thì $am^3+bm^2+cm+d$ lẻ cho $d$ lẻ nên $P(m)\neq 0$

Nếu $m$ lẻ: Do $a,b,c$ nhận giá trị lẻ, chẵn, chẵn hoặc chẵn, chẵn, chẵn nên $am^3+bm^2+cm$ đều chẵn. Kéo theo $P(m)=am^3+bm^2+cm+d$ lẻ

$\Rightarrow P(m)\neq 0$

Tóm lại $P(m)\neq 0$

$\Rightarrow x=m$ không là nghiệm của $P(x)$. Do đó điều giả sử là sai.

 Ta có đpcm.