Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai rồi bn. Hình như f(2) đổi thành f(-2) và f(1).f(2) ms đúng
thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d
thay b= 3a+c vào 2 đa thức trên sẽ đc:
f(1)= 4a+2c+d và f(-2)= 4a+2c+d
=> f(1).f(-2)= ( 4a+2c+d )2
mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
vậy f(1).f(-2) là bình phương của một số nguyên
ko tránh khỏi thiếu sót, nếu làm sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi
_Hết_
Đề sai của bạn sai nhé
Hình như f(2) đổi thành f(-2) và f(1).f(2) mới đúng
Thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d
Thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d thay b= 3a+c
Vào 2 đa thức trên sẽ đc: f(1)= 4a+2c+d và f(-2)= 4a+2c+d => f(1).f(-2)= ( 4a+2c+d )\(^2\)
Mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z
Vậy f(1).f(-2) là bình phương của một số nguyên
Gọi nghiệm nguyên của P(x) là: k
ta có: \(ak^3+bk^2+ck+d=0\)
\(k.\left(ak^2+bk+k\right)=-d\)( *)
ta có: \(P_{\left(1\right)}=a+b+c+d\)
\(P_{\left(0\right)}=d\)
mà P(1); P(0) là các số lẻ
=> a+b+c+d và d là các số lẻ
mà d là số lẻ
=> a+b+c là số chẵn
Từ (*) => k thuộc Ư(d)
mà d là số lẻ
=> k là số lẻ
=> \(k^3-1;k^2-1;k-1\)là các số chẵn
\(\Rightarrow a\left(k^3-1\right)+b\left(k^2-1\right)+c\left(k-1\right)\) là số chẵn
\(=\left(ak^3+bk^2+ck\right)-\left(a+b+c\right)\)
mà a+b+c là số chẵn
\(\Rightarrow ak^3+bk^2+c\) là số chẵn
Từ (*) => d là số chẵn ( vì d là số lẻ)
=> P(x) không thể có nghiệm nguyên
Cho f( x ) = ax3+bx2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c. Chứng minh rằng f (1); f(2) là bình phương của một số nguyên.
Đọc thêm
Toán lớp 7
Ko biết là bạn có cần nữa ko.
Nhưng mình vẫn trả lời cho những bạn khác đang cần.
Do P(0) và P(1) lẻ nên ta có:
P(0)=d=> d là số lẻ
P(1)=a+b+c+d => a+b+c+d là số lẻ
Giả sử y là nghiệm nguyên của P(x). Khi đó:
P(y)=ay^3+by^2+cy+d=0
=>ay^3+by^2+cy=-d
Mà d là số lẻ
=>y là số lẻ
Lại có: P(y)-P(1)=(ay^3+by^2+cy+d)-(a+b+c+d)
=a(y^3-1)+b(y^2-1)+c(y-1)+(d-d)
=a(y^3-1)+b(y^2-1)+c(y-1)
Do y là số lẻ=>P(y)-P(1) là số chẵn(1)
Mà P(y)-P(1)= 0-a+b+c+d
=-a-b-c-d
Do a+b+c+d lẻ
=>-a-b-c-d lẻ
Hay P(y)-P(1) là số lẻ(2)
Vì (1) và (2) mâu thuẫn
=> Giả sử sai
Hay f(x) ko thể có nghiệm là các số nguyên(ĐCCM)