K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong

3 tháng 5 2018

a)

Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)

                  \(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)

                    \(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)

                     \(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)

                       \(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)

                         \(=-x+1\)

- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:

   \(f\left(2018\right)=-2018+1=-2017\)

Vậy \(f\left(2018\right)=-2017\)

25 tháng 4 2019

Sửa đề nha :

f(x) = -x2019 + 2019x2018 - 2019x2017+...- 2019x2 + 2019x + 2019

Ta có : 2019 = 2018 + 1 = x + 1

=> f(x) = -x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... - ( x + 1 )x2 + ( x + 1 )x + 2019

          = -x2019 + x2019 + x2018 - x2018 - x2017 + ... - x3 - x2 + x2 + x + 2019

          = x + 2019

          = 4037

Study well ! >_<

Bạn Hồng Anh làm sai rồi Ở -2019x (dấu trừ sao bạn đổi thành cộng ??)

Kq =1 nha (-2018+2019)

Hok tốt

3 tháng 4 2017

MINK CŨNG ĐANG CẦN CÂU NÀY GIÚP MIK VỚI

10 tháng 5 2018

Bài 1 :

( 4x - 3 ) - ( x + 5 ) = 3 . ( 10 - x )

<=> 4x - 3 - x - 5 = 30 - 3x

=> 3x - 8 = 30 - 3x

=> 3x + 3x = 30 + 8

=> 6x = 38

=> x = \(\dfrac{19}{3}\)

Vậy x = \(\dfrac{19}{3}\)

Bài 2 :

Ta có : - f ( x ) = ( x - 1 ) . ( x + 2 ) = 0

=> x - 1 = 0 => x = 1

x + 2 = 0 => x = -2

- g ( 1 ) = 13 + a . 12 + b . 1 + 2 = 0

<=> 1 + a + b + 2 = 0

=> a = - 3 - b

- g ( -2 ) = ( -2 )3 + a . ( -2 )2 + b . ( -2 ) + 2 = 0

<=> - 8 + 4a - 2b + 2 = 0

hay -8 + 4 . ( -3 - b ) - 2b + 2 = 0

<=> -8 - 12 - 4b - 2b + 2 = 0

=> -18 - 6b = 0

=> b = -3

=> a = 0

Vậy a = 0 ; b= -3

9 tháng 4 2018

\(E\left(x\right)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)

\(E\left(2018\right)\) nên :

\(\Rightarrow E\left(x\right)=2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018+1\)

Tới đoạn này thì ghi dấu "=" rồi tính và làm tương tự

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải

Ta có:

\(E(x)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)

\(E(x)=(x^{2018}-2018x^{2017})-(x^{2017}-2018x^{2016})+(x^{2016}-2018x^{2015})-....+(x^2-2018x)-x+1\)

\(E(x)=x^{2017}(x-2018)-x^{2016}(x-2018)+x^{2015}(x-8)-...+x(x-2018)-x+1\)

\(E(x)=(x-2018)(x^{2017}-x^{2016}+x^{2015}-...+x)-x+1\)

Suy ra \(E(2018)=-2018+1=-2017\)

31 tháng 5 2016

Câu 1:    a) x = 1 là nghiệm của đa thức f(x)

              b) x = -1 là nghiệm của đa thức g(x)

              c) x = 1 là nghiệm của đa thức h(x)

Câu 2: Số 1 là ngiệm của đa thức f(x)

NV
7 tháng 5 2019

\(x=2018\Rightarrow2019=x+1\)

\(x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+1\right)\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-1\)

\(=-1\)

8 tháng 5 2022

Cho `f(x)=0`

`=>2019x-5=0`

`=>2019x=5`

`=>x=5/2019`

Vậy nghiệm của đa thức `f(x)` là `x=5/2019`

8 tháng 5 2022

 f(x) = 2019x - 5

\(2019x-5=0\)

\(2019x=0+5\)

\(2019x=5\)

\(x=5:2019\)

\(x=\dfrac{5}{2019}\)

Nghiệm : \(\dfrac{5}{2019}\)