Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề nha :
f(x) = -x2019 + 2019x2018 - 2019x2017+...- 2019x2 + 2019x + 2019
Ta có : 2019 = 2018 + 1 = x + 1
=> f(x) = -x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... - ( x + 1 )x2 + ( x + 1 )x + 2019
= -x2019 + x2019 + x2018 - x2018 - x2017 + ... - x3 - x2 + x2 + x + 2019
= x + 2019
= 4037
Study well ! >_<
Bạn Hồng Anh làm sai rồi Ở -2019x (dấu trừ sao bạn đổi thành cộng ??)
Kq =1 nha (-2018+2019)
Hok tốt
thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong
a)
Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)
\(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x+1\)
- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:
\(f\left(2018\right)=-2018+1=-2017\)
Vậy \(f\left(2018\right)=-2017\)
Ta có: x=2018
nên x+1=2019
Ta có: \(A=x^5-2019x^4+2019x^3-2019x^2+2019x-2020\)
\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2020\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)
\(=x-2020=2019-2020=-1\)
ta có: x = 2018 => 2019 = x + 1. Do đó:
\(C=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-1.\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-1.\)
\(=x-1=2019-1=2018\)
Vậy C = 2018 với x = 2018.
Học tốt nhé ^3^
\(Ta \) \(có :\)
\(x = 2018\)\(\Leftrightarrow\)\(x + 1 = 2019\)
\(Thay \) \(x + 1 = 2019\)\(vào \) \(C , ta \) \(được :\)
\(C = x\)\(15\)\(- ( x + 1 ).x\)\(14\)\(+ ( x + 1 ).x\)\(13\) \(- ( x + 1 ).x\)\(12\) \(+ ...+ ( x + 1 ).x - 1\)
\(C = x\)\(15\)\(- x\)\(15\)\(- x\)\(14\) \(+ x\)\(14\) \(+ x\)\(13\)\(- x\)\(13\)\(- x\)\(12\)\(+ ... + x^2 + x - 1\)
\(C = x - 1\)
\(Thay \) \(x = 2018\) \(vào \) \(C\) \(, ta \) \(được :\)
\(C = 2018 - 1 = 2017\)
Ta có: x = 2018 \(\Rightarrow x+1=2019\).
\(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x-1=-2018-1=-2019\)
\(x=2018\Rightarrow2019=x+1\)
\(x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-\left(x+1\right)\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x-1\)
\(=-1\)