K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

A/D định lí Bơ- Zu

Tìm dc a,b,c 

3 tháng 3 2016

24 nha trong vio 

3 tháng 3 2016

thì bạn lay;

2x3 + 8x2 + 2x +-4  lan luot chia cho x-1 du a ; x+2 du b ; x+3 du c roi cong lai

( chia da thuc cho da thuc )

4 tháng 10 2023

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)

 

NV
6 tháng 1

\(f\left(x\right)=6x^3-7x^2-16x+m\)

Do \(f\left(x\right)\) chia hết \(2x-5\), theo định lý Bezout:

\(f\left(\dfrac{5}{2}\right)=0\Rightarrow6.\left(\dfrac{5}{2}\right)^3-7.\left(\dfrac{5}{2}\right)^2-16.\left(\dfrac{5}{2}\right)+m=0\)

\(\Rightarrow m=-10\)

Khi đó  \(f\left(x\right)=6x^3-7x^2-16x-10\)

Số dư phép chia cho \(3x-2\):

\(f\left(\dfrac{2}{3}\right)=6.\left(\dfrac{2}{3}\right)^3-7.\left(\dfrac{2}{3}\right)^2-16.\left(\dfrac{2}{3}\right)-10=-22\)

6 tháng 1

Do �(�) chia hết 2�−5, theo định lý Bezout:

�(52)=0⇒6.(52)3−7.(52)2−16.(52)+�=0

⇒�=−10

Khi đó  �(�)=6�3−7�2−16�−10

Số dư phép chia cho 3�−2:

�(23)=6.(23)3−7.(23)2−16.(23)−10=−22

NV
21 tháng 9 2019

Bạn vào đây xem thử

Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến

27 tháng 1 2022

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

27 tháng 1 2022

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2

15 tháng 10 2021

\(f\left(x\right):\left(x-a\right)\) dư r1

\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\cdot a\left(x\right)+r_1\\ \Leftrightarrow f\left(a\right)=r_1\)

Vì \(\left(x-a\right)\left(x-b\right)\) là đa thức bậc 2 nên có dư bậc 1

Gọi dư của \(f\left(x\right):\left(x-a\right)\left(x-b\right)\) là \(cx+d\)

\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ \Leftrightarrow f\left(a\right)=ac+d=r_1\left(1\right)\\ f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ =\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+c\left(x-b\right)+bc+d\\ =\left(x-b\right)\left[\left(x-a\right)\cdot c\left(x\right)+c\right]+bc+d\)

Vì \(f\left(x\right):\left(x-b\right)\) dư r2 nên \(bc+d=r_2\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}bc+d=r_2\\ac+d=r_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c\left(a-b\right)=r_1-r_2\\ac+d=r_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=r_1-\dfrac{a\left(r_1-r_2\right)}{a-b}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=\dfrac{ar_2-br_1}{a-b}\end{matrix}\right.\)

Vậy đa thức dư là \(\dfrac{r_1-r_2}{a-b}x+\dfrac{ar_2-br_1}{a-b}\)

 

17 tháng 4 2016

a2+b2=a3+b3=1 

suy ra a = 1 hoặc b = 1

suy ra a4+b4cũng =1

17 tháng 4 2016

bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé

29 tháng 5 2017

b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)

Theo đề bài ta có:

\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)

Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)

\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)

Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM