Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để d cắt Ox, Oy tại 2 điểm pb thì \(\left(m-1\right)\left(m^2-4\right)\ne0\Rightarrow\left[{}\begin{matrix}m\ne1\\m\ne\pm2\\\end{matrix}\right.\)
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}y=0\\\left(m-1\right)x+m^2-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=0\\x=\frac{4-m^2}{m-1}\end{matrix}\right.\)
\(\Rightarrow OA=\left|\frac{4-m^2}{m-1}\right|=\left|\frac{m^2-4}{m-1}\right|\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x=0\\y=m^2-4\end{matrix}\right.\) \(\Rightarrow OB=\left|m^2-4\right|\)
\(3OA=OB\Leftrightarrow3\left|\frac{m^2-4}{m-1}\right|=\left|m^2-4\right|\Leftrightarrow\left|m-1\right|=3\) \(\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\left(l\right)\end{matrix}\right.\)
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(m-1\right)x+m-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m-1\right)=-m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-m+3}{m-1}\\y=0\end{matrix}\right.\)
=>\(A\left(\dfrac{-m+3}{m-1};0\right)\)
\(OA=\sqrt{\left(0+\dfrac{-m+3}{m-1}\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-3}{m-1}\right)^2}=\left|\dfrac{m-3}{m-1}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m-1\right)\cdot x+m-3=0\left(m-1\right)+m-3=m-3\end{matrix}\right.\)
=>B(0;m-3)
\(OB=\sqrt{\left(0-0\right)^2+\left(m-3-0\right)^2}=\sqrt{\left(m-3\right)^2}=\left|m-3\right|\)
Để ΔOAB cân thì OA=OB
=>\(\left|m-3\right|=\left|\dfrac{m-3}{m-1}\right|\)
=>\(\left|m-3\right|\left(\dfrac{1}{\left|m-1\right|}-1\right)=0\)
=>\(\left[{}\begin{matrix}m-3=0\\\dfrac{1}{\left|m-1\right|}-1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=3\\\left|m-1\right|=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m-1=1\\m-1=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=3\\m=2\\m=0\end{matrix}\right.\)
a) pt hoành độ giao điểm: \(x^2-2x+3-m^2=0\)
Để đường thẳng d cắt (P) tại 2 điểm phân biệt thì \(\Delta'>0\)
\(\Delta'=1+m^2-3\Rightarrow m^2-2>0\Rightarrow\left|m\right|>\sqrt{2}\)
b) Gọi giao điểm là \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)
\(\Rightarrow A\left(x_1,x_1^2\right);B\left(x_2,x_2^2\right)\)
Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=3-m^2\end{matrix}\right.\)
Theo đề: \(y_1-y_2=8\Rightarrow x_1^2-x_2^2=8\Rightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=8\)
\(\Rightarrow x_1-x_2=4>0\)
Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=4m^2-8\)
\(\Rightarrow x_1-x_2=\sqrt{4m^2-8}\left(x_1-x_2>0\right)\Rightarrow4=\sqrt{4m^2-8}\)
\(\Rightarrow4m^2-8=16\Rightarrow m=\pm\sqrt{6}\)
a, Từ giả thiết suy ra \(\left\{{}\begin{matrix}a+b=-2\\-2a+b=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=-\dfrac{1}{3}\end{matrix}\right.\Rightarrow y=-\dfrac{5}{3}x-\dfrac{1}{3}\)
b,
c, Phương trình hoành độ giao điểm
\(-\dfrac{5}{3}x-\dfrac{1}{3}=x-3\Leftrightarrow x=1\Rightarrow y=-2\Rightarrow M\left(1;-2\right)\)
d1, \(tanMPQ=-\left(-\dfrac{5}{3}\right)=\dfrac{5}{3}\Rightarrow\widehat{MPQ}\approx59^o\)
d2, \(P\left(-\dfrac{1}{5};0\right);Q\left(3;0\right);M\left(1;-2\right)\)
Chu vi \(P=PQ+QM+MP=\dfrac{16}{5}+2\sqrt{2}+\dfrac{2\sqrt{34}}{5}\)
\(p=\dfrac{\dfrac{16}{5}+2\sqrt{2}+\dfrac{2\sqrt{34}}{5}}{2}\)
Diện tích \(S=\sqrt{p\left(p-\dfrac{16}{5}\right)\left(p-2\sqrt{2}\right)\left(p-\dfrac{2\sqrt{34}}{5}\right)}=...\)