Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (d)//(d') nên a=3
Vậy: y=3x+b
Thay x=0 và y=4 vào y=3x+b, ta được:
b=4
\(a,PTHDGD:2x-1=-x+2\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow M\left(1;1\right)\\ b,\text{Gọi đt của }\left(d\right)\text{ là }y=ax+b\left(a\ne0\right)\\ \Leftrightarrow\left\{{}\begin{matrix}a+b=1\\0a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=4\end{matrix}\right.\Leftrightarrow\left(d\right):y=-3x+4\)
1. ta có pt đường thẳng (d) có dạng y=ax+b
vì phương trình đường thẳng (d) song song với đường thẳng (∆) y=x+2
=>\(\left\{{}\begin{matrix}a=1\\b\ne2\end{matrix}\right.\)
vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có hoành độ bằng -12( cái kia bạn viết là -12 à?)
=>x=-12
thay x=-12 vào pt (P) ta được: y=(-12)^2=144
thay x=-12,y=144, a=1 vòa pt (d) ta có:
144=-12+b=>b=156
=>pt (d) dạng y=x+156
2. pt (d) có dạng y=ax+b
vì phương trình đường thẳng (d) vuông góc với đường thẳng (∆) y=x+1
=> a.a'=-1<=>a.1=-1=>a=-1
vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có tung độ bằng 9
=>y=9=>x=+-3
với x=3,y=9,a=-1 thay vào pt(d) ta được:
9=-3+b=>b=12=>pt(d): y=-x+12
với x=-3,y=9,a=-1 thay vào pt (d)
=>9=3+b=>b=6=>pt(d) dạng: y=x+6
a) Gọi phương trình đường thẳng cần lập là \(y=ax+b\left(d_1\right)\).
Để \(\left(d_1\right)\)//\(\left(d\right)\) thì \(a=2\) \(\Rightarrow\left(d_1\right):y=2x+b\).
Xét phương trình hoành độ giao điểm của \(\left(d_1\right)\) và \(\left(d'\right)\):
\(2x+b=3x-2\Leftrightarrow x=b+2\).
Hai đường thẳng này cắt nhau tại điểm có hoành độ là 2
\(\Leftrightarrow b+2=2\Leftrightarrow b=0\).
Vậy phương trình đường thẳng cần lập là \(\left(d_1\right):y=2x\).
b) Gọi phương trình đường thẳng cần lập là \(y=ax+b\left(d_2\right)\).
\(\left(d_2\right)\perp\left(d'\right)\Leftrightarrow3a=-1\Leftrightarrow a=-\dfrac{1}{3}\)
\(\Rightarrow\left(d_2\right):y=-\dfrac{1}{3}x+b\).
Xét phương trình hoành độ giao điểm của \(\left(d_2\right)\) và \(\left(d\right)\):
\(2x-3=-\dfrac{1}{3}x+b\Leftrightarrow\dfrac{7}{3}x=b+3\Leftrightarrow x=\dfrac{3b+9}{7}\)
\(\Rightarrow y=2x-3=\dfrac{6b-3}{7}\).
Hai đường thẳng này cắt nhau tại điểm có tung độ bằng -1
\(\Leftrightarrow\dfrac{6b-3}{7}=-1\Leftrightarrow6b-3=-7\Leftrightarrow b=-\dfrac{2}{3}\).
Vậy phương trình đường thẳng cần lập là \(\left(d_2\right):y=-\dfrac{1}{3}x-\dfrac{2}{3}\).
Gọi \(\left(d\right):y=ax+b\) là đt của (d)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne\sqrt{3}\\b=1\end{matrix}\right.\Leftrightarrow\left(d\right):y=2x+1\Leftrightarrow2x-y+1=0\)
Khoảng cách từ K đến (d) là \(d\left(K;d\right)=\dfrac{6\cdot1-1+1}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)
Vì (d')//(d) nên a=-1
Vậy: (d'): y=-x+b
Thay x=0 và y=3 vào (d'), ta được: b=3
Gọi \(\left(d'\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\left(d'\right)\text{//}\left(d\right)\Leftrightarrow a=-1;b\ne1\Leftrightarrow\left(d'\right):y=-x+b\\ A\left(0;3\right)\in\left(d'\right)\Leftrightarrow b=3\)
Vậy \(\left(d'\right):y=-x+3\)