Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao của d và d1 là điểm có hoành độ thỏa mãn :
2x + 3 = ( m + 1) x + 5
2x - ( m + 1) x = 5 - 3
x ( 2 - m - 1) = 2
( 1-m) x = 2
x = 2 : ( 1-m) đk m # 1
Để d và d1 cắt nhau về bên trái trục tung thì \(\dfrac{2}{1-m}\) < 0
1- m < 0 => m > 1
a: Thay x=0 và y=11 vào (d), ta được:
-2m+1=11
hay m=-5
a: Để (d) cắt (d1) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m-2\ne2\\-2m+1=m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne4\\-3m=1\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{3}\)
b: Tọa độ giao điểm của d1 và d2 là:
\(\left\{{}\begin{matrix}x+2=4-3x\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}+2=\dfrac{5}{2}\end{matrix}\right.\)
Thay x=1/2 và y=5/2 vào (d), ta được:
\(\dfrac{1}{2}\left(m-2\right)+2+m=\dfrac{5}{2}\)
=>\(\dfrac{1}{2}m-1+m+2=\dfrac{5}{2}\)
=>\(\dfrac{3}{2}m=\dfrac{3}{2}\)
=>m=1
c: (d): y=(m-2)x+m+2
=mx-2x+m+2
=m(x+1)-2x+2
Tọa độ điểm cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}x+1=0\\y=-2x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\cdot\left(-1\right)+2=4\end{matrix}\right.\)
Ta có:
\(\left(d_1\right):2x-y=-1.\Leftrightarrow2x+1=y.\\ \left(d_2\right):x+2y=12.\Leftrightarrow-\dfrac{1}{2}x+6=y.\)
Xét phương trình hoành độ giao điểm của \(\left(d_1\right);\left(d_2\right):\)
\(2x+1=\dfrac{-1}{2}x+6.\\ \Leftrightarrow\dfrac{5}{2}x=5.\\ \Leftrightarrow x=2.\)
\(\Rightarrow y=5.\)
Thay \(x=2;y=5\) vào \(\left(d\right):\)
\(2m+1=5.\\ \Leftrightarrow m=2.\)
Vậy \(m=2\) thì \(\left(d\right);\left(d_1\right);\left(d_2\right)\) đồng quy tại 1 điểm.
a: Thay x=0 và y=3 vào (d1), ta đc:
2m+1=3
=>2m=2
=>m=1
(d1): y=3
=>giao của (d1) với (d) nằm trên trục hoành
b: \(h\left(O;d1\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{\left|2m+1\right|}{\sqrt{\left(m-1\right)^2+1}}\)
Để h lớn nhất thì m=1
\(a,\Leftrightarrow A\left(0;2\right)\in\left(d\right)\Leftrightarrow3m-1=2\Leftrightarrow m=1\\ b,\Leftrightarrow m-2=-2\Leftrightarrow m=0\\ c,\Leftrightarrow\left\{{}\begin{matrix}m-2=3\\3m-1\ne-2\end{matrix}\right.\Leftrightarrow m=5\\ d,\text{PT hoành độ giao điểm: }\left(m-2\right)x+3m-1=3x-2\\ \Leftrightarrow x\left(m-2-3\right)+3m-1+2=0\\ \Leftrightarrow x\left(m-5\right)=-3m-1\Leftrightarrow x=\dfrac{-3m-1}{m-5}\)
Vì 2 đt cắt bên trái trục tung nên hoành độ âm
\(\Leftrightarrow x< 0\Leftrightarrow\dfrac{-3m-1}{m-5}< 0\Leftrightarrow\dfrac{3m+1}{m-5}>0\Leftrightarrow\left[{}\begin{matrix}m>5\\m< -\dfrac{1}{3}\end{matrix}\right.\)
\(e,\text{Gọi điểm cố định mà }\left(d\right)\text{ luôn đi qua là }M\left(x_0;y_0\right)\\ \Leftrightarrow\left(m-2\right)x_0+3m-1=y_0\\ \Leftrightarrow mx_0-2x_0+3m-1-y_0=0\\ \Leftrightarrow m\left(x_0+3\right)-\left(2x_0+y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\2x_0+y_0+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\Leftrightarrow M\left(-3;5\right)\\ \text{Vậy }\left(d\right)\text{ luôn đi qua }M\left(-3;5\right)\)
a. \(d//d_1\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne2\end{matrix}\right.\)
b. \(d\cap d_1\Leftrightarrow-2\ne1-m\Leftrightarrow m\ne3\)
c. \(d=d_1\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=2\end{matrix}\right.\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m\ne2\end{matrix}\right.\Leftrightarrow m=3\\ 2,\Leftrightarrow\left\{{}\begin{matrix}-2\ne1-m\\m\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ne2\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}-2=1-m\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m=2\end{matrix}\right.\Leftrightarrow m\in\varnothing\)