K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (SC;(SAB))=(SC;SB)=góc BSC

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)

\(SB=\sqrt{a^2+\left(a\sqrt{3}\right)^2}=2a\)

\(cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{4a^2+5a^2-a^2}{2\cdot2a\cdot a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

=>góc BSC=27 độ

b: (SO;(SAB))=(SO;SK)(OK vuông góc AB tại K)

Xét ΔABC có OK//BC

nên OK/BC=AK/AB=AO/AC=1/2

=>OK=a/2; AK=1/2a

\(SK=\sqrt{SA^2+AK^2}=\sqrt{3a^2+\dfrac{1}{4}a^2}=\dfrac{a\sqrt{13}}{2}\)

\(SO=\sqrt{SA^2+AO^2}=\sqrt{3a^2+\dfrac{1}{2}a^2}=\dfrac{a\sqrt{14}}{2}\)

OK=a/2

\(cosOSK=\dfrac{SO^2+SK^2-OK^2}{2\cdot SO\cdot SK}=\dfrac{\dfrac{14}{4}a^2+\dfrac{13}{4}a^2-\dfrac{1}{4}a^2}{2\cdot\dfrac{a\sqrt{14}}{2}\cdot\dfrac{a\sqrt{13}}{2}}=\dfrac{\sqrt{182}}{14}\)

=>góc OSK=16 độ

c: (SA;SBD)=(SA;SO)(AO vuông góc BD) tại O

=góc ASO

\(SO=\sqrt{SA^2+AO^2}=\sqrt{3a^2+\dfrac{1}{2}a^2}=\dfrac{a\sqrt{14}}{2}\)

SA=a căn 3

AO=a*căn 2/2

\(cosASO=\dfrac{SA^2+SO^2-AO^2}{2\cdot SA\cdot SO}=\dfrac{\sqrt{42}}{7}\)

=>góc ASO=22 độ

 

 

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

b: BC vuông góc AB

BC vuông góc SA
=>BC vuông góc (SAB)

=>BC vuông góc AK

mà AK vuông góc SB

nên AK vuông góc (SBC)

 

(SC;(SAB))=(SC;SB)=góc BSC

\(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)

\(SB=\sqrt{a^2+\left(a\sqrt{3}\right)^2}=2a\)

\(cosBSC=\dfrac{SB^2+SC^2-BC^2}{2\cdot SB\cdot SC}=\dfrac{4a^2+5a^2-a^2}{2\cdot2a\cdot a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

=>góc BSC=27 độ

13 tháng 3 2022

undefinedundefinedundefined

27 tháng 4 2021

undefined

a: \(AC=\sqrt{a^2+a^2}=a\sqrt{2}\)

(SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=1/căn 2

=>góc SCA=35 độ

b:

Kẻ BH vuông góc AC tại H

(SB;SAC)=(SB;SH)=góc BSH

\(HB=\dfrac{a\cdot a}{a\sqrt{2}}=a\cdot\dfrac{\sqrt{2}}{2}\)

AH=AC/2=a*căn 2/2

=>\(SH=\sqrt{a^2+\dfrac{1}{2}a^2}=a\sqrt{\dfrac{3}{2}}\)

\(SH=\dfrac{a\sqrt{6}}{2};HB=\dfrac{a\sqrt{2}}{2};SB=a\sqrt{2}\)

\(cosBSH=\dfrac{SB^2+SH^2-BH^2}{2\cdot SB\cdot SH}=\dfrac{\sqrt{3}}{2}\)

=>góc BSH=30 độ

c: (SD;(SAB))=(SD;SA)=góc ASD

tan ASD=AD/AS=2

nên góc ASD=63 độ

 

 

a: CD vuông góc AD; CD vuông góc SA

=>CD vuông góc (SAD)

b: BD vuông góc AC; BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

c: (SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=căn 3

=>góc SCA=60 độ

a: ta có: BC\(\perp\)AB(ABCD là hình vuông)

BC\(\perp\)SA(SA\(\perp\)(ABCD))

AB,SA cùng thuộc mp(SAB)

Do đó: BC\(\perp\)(SAB)

b: Ta có: BD\(\perp\)AC(ABCD là hình vuông)

BD\(\perp\)SA(SA\(\perp\)(ABCD))

AC,SA cùng thuộc mp(SAC)

Do đó: BD\(\perp\)(SAC)

c: Ta có: BC\(\perp\)(SAB)

AH\(\subset\)(SAB)

Do đó: BC\(\perp\)AH

Ta có: AH\(\perp\)SB

AH\(\perp\)BC

SB,BC cùng thuộc mp(SBC)

Do đó: AH\(\perp\)(SBC)

d: Ta có: AH\(\perp\)(SBC)

SC\(\subset\)(SBC)

Do đó: AH\(\perp\)SC

Ta có: CD\(\perp\)SA(SA\(\perp\)(ABCD))

CD\(\perp\)AD(ABCD là hình vuông)

SA,AD cùng thuộc mp(SAD)

Do đó: CD\(\perp\)(SAD)

=>AK\(\perp\)CD

mà AK\(\perp\)SD

và CD,SD cùng thuộc mp(SCD)

nên AK\(\perp\)(SCD)

=>AK\(\perp\)SC

Ta có: SC\(\perp\)AK

SC\(\perp\)AH

AK,AH cùng thuộc mp(AKH)

Do đó: SC\(\perp\)(AKH)

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

SO vuông góc (ABCD)

=>(SBD) vuông góc (ABCD)

b: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

d: (SB;(ABCD))=(BS;BO)=góc SBO

cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2

=>góc SBO=60 độ