Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đầu là x.
Cấp số cộng là q.
=> Số đầu, thứ 2. 3,4,5 là x,x+q,x+2q,x+3q,x+4q.
Tổng số 1 và 3 là x + (x+2q) = 28
Tổng số 3 và cuối là (x+2q)+(x+4q)=40.
Ta đã có 2 phương trình tạo thành 1 hệ phương trình.
Giải hệ tìm x và q.
Chúc em học tốt!
Gọi ba số hạng liên tiếp lần lượt là a-n;a;a+n
Theo đề, ta có: a-n+a+a+n=27 và (a-n)(a+n)=56
=>a=9 và (9-n)(9+n)=56
=>a=9 và \(n\in\left\{5;-5\right\}\)
Đáp án C
Gọi d = 2 x là công sai
ta có bốn số là a - 3 x , a - x , a + x , a + 3 x
Khi đó, từ giả thiết ta có:
⇔ 1 , 3 , 5 , 7 7 , 5 , 3 , 1
Tổng bình phương của số hạng đầu và cuối là 1 2 + 7 2 = 50
Halo lau ko gap :)
\(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_2=u_1.q=-2\end{matrix}\right.\Rightarrow q=-\dfrac{2}{\sqrt{2}}=-\sqrt{2}\)
\(u_n=64\sqrt{2}=u_1.q^{n-1}\Leftrightarrow\sqrt{2}.\left(-\sqrt{2}\right)^{n-1}=64\sqrt{2}\)
\(\Leftrightarrow\left(-\sqrt{2}\right)^{n-1}=64\Rightarrow n-1=\log_{\sqrt{2}}64=12\Leftrightarrow n=13\)
\(S_{13}=u_1.\dfrac{q^{13}-1}{q-1}=\sqrt{2}.\dfrac{\left(-\sqrt{2}\right)^{13}-1}{-\sqrt{2}-1}=...\)
Check lại số má hộ tui nhó, số ghê quá
u 1 = 18 , u 2 = 54 ⇒ q = u 2 u 1 = 3.
Lại có u n = 39366 ⇔ u 1 . q n − 1 = 39366 ⇔ 18.3 n − 1 = 39366 ⇔ 3 n − 1 = 3 7 ⇔ n = 8
Vậy S 8 = 18. 1 − 3 8 1 − 3 = 59040
Chọn đáp án B.
Chọn B.
u1 = 18, u2 = 54 ⇒ q = 3
un = 39366 ⇔ u1.qn-1 = 39366 ⇔ 18.3n-1 = 39366 ⇔ 3n-1 = 37 ⇔ n = 8.
Vậy
Chọn C
- Theo đầu bài ta có: u 1 = - 15 ; u 8 = 69 .
- Ta có:
Đáp án C
Ta có u 1 = 3 ; u 8 = 24 ; n = 8
S = 3 + 24 .8 2 = 108