Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AM-Gm đyyyyy
Giả sử P đạt min khi x=a=z>0; b=y>0; c=t>0. Khi đó bx=bz=ay; cx=cz=at và ta nghĩ đến việc sử dụng BĐT AM-GM như sau:
\(abxy\le\frac{b^2x^2+a^2y^2}{2}\left(1\right);abyz\le\frac{a^2y^2+b^2z^2}{2}\left(2\right);aczt\le\frac{c^2z^2+a^2t^2}{2}\left(3\right);actx\le\frac{a^2t^2+c^2x^2}{2}\left(4\right)\)
Từ (1);(2); (3) và (4) suy ra:
\(abcxy\le\frac{c\left(b^2x^2+a^2y^2\right)}{2}\left(5\right);abcyz\le\frac{c\left(a^2y^2+b^2z^2\right)}{2}\left(6\right);abczt\le\frac{b\left(a^2z^2+a^2t^2\right)}{2}\left(7\right);abctx\le\frac{b\left(a^2t^2+c^2x^2\right)}{2}\left(8\right)\)
Cộng các bất đẳng thức (5) (6) (7) (8) theo vế ta được
\(abc=abc\left(xy+yz+zt+tx\right)\le\)\(\frac{c\left(b^2x^2+a^2y^2\right)+c\left(a^2y^2+b^2z^2\right)+b\left(a^2z^2+a^2t^2\right)+b\left(a^2t^2+c^2x^2\right)}{2}=\frac{\left(b^2c+bc^2\right)\left(x^2+z^2\right)+2a^2cy^2+2a^2bt^2}{2}\)
tức \(\left(b^2c+bc^2\right)\left(x^2+z^2\right)+2a^2cy^2+2a^2bt^2\ge2abc\left(9\right)\)
Như vậy để tìm minP cần tìm các số a,b,c theo tỉ lệ thích hợp sao cho hệ số x2;y2;t2 chia nhau theo tỉ lệ 5:4:1
\(\frac{b^2c+bc^2}{5}=\frac{2a^2c}{4}=\frac{2a^2b}{1}\)
Mặt khác, ta có bất đẳng thức xảy ra khi x=z=a;y=b;c=t mà theo giả thiết xy+yz+zt+tx=1 nên phải có ab+bc+ca+ac=1
Và như vậy ta đưa được bài toán về việc giải hệ phương trình \(\hept{\begin{cases}\frac{bc\left(b+c\right)}{5}=\frac{a^2c}{2}=2a^2b\\a\left(b+c\right)=\frac{1}{2}\end{cases}}\)(*)
Giải hệ này ta tìm được \(a=\frac{1}{\sqrt[4]{50}};b=\frac{1}{\sqrt[4]{200}};c=\frac{1}{\sqrt[4]{200}}\)khi đó bất đẳng thức (9) trở thành
\(10a^2b\left(x^2+z^2\right)+8a^2by^2+2a^2b^2t^2\ge2abc\)
\(\Rightarrow P=5x^2+5z^2+4y^2+t^2\ge\frac{2abc}{2a^2b}=\frac{c}{a}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)
Vì vậy ta có đẳng thức xảy ra khi \(x=z=a=\frac{1}{\sqrt[4]{50}};b=y=\frac{1}{\sqrt[4]{200}};c=t=\frac{1}{\sqrt[4]{200}}\)
\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)
áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương
ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)
ta có :
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)
lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :
\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)
\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)
vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
*Max
Có: \(x^2+4\ge4x\)
\(y^2+4\ge4y\)
\(z^2+4\ge4z\)
\(\Rightarrow x^2+y^2+z^2+12\ge4\left(x+y+z\right)\)\(\Rightarrow x+y+z\le\frac{x^2+y^2+z^2+12}{4}\)
Lại có \(xy+yz+zx\le x^2+y^2+z^2\)(Auto chứng minh)
Cộng 2 vế của bdtd lại ta đc \(x+y+z+xy+yz+zx\le\frac{5\left(x^2+y^2+z^2\right)+12}{4}\)
\(=\frac{5.12+12}{4}=18\)
"=" KHI x = y= z = 2
*Min : ta có : \(12+2\left(xy+yz+zx\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2\ge0\)
\(\Rightarrow xy+yz+zx\ge-6\)
Dấu "=" xảy ra <=> x + y + z = 0
Với các giá trị trên ta đc \(x+y+z+xy+yz+zx\ge0-6=-6\)
Dấu "=" <=> x + y + z = 0 và x2 + y2 + z2 = 12
bạn ơi mình giải thế này thì sao nhỉ:
đặt x+y+z=a=> \(a^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
=> \(xy+yz+zx=\frac{a^2-\left(x^2+y^2+z^2\right)}{2}\ge\frac{a^2-12}{2}\)
\(\Rightarrow P\ge a+\frac{a^2-12}{2}\ge-\frac{13}{2}\)( dùng hằng đẳng thức c/m)
dấu " =" <=> \(\hept{\begin{cases}x+y+z=-1\\x^2+y^2+z^2=12\end{cases}}\)
bạn xem thử hộ mik cái =)
Ta có:
\(2\left(2x^2+xy+2y^2\right)=3\left(x^2+y^2\right)+\left(x+y\right)^2\ge\dfrac{3}{2}\left(x+y\right)^2+1\left(x+y\right)^2=\dfrac{5}{2}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
Gợi ý. Dùng cái trên.