Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=16\)
\(\Rightarrow x+y\ge-4\)
\(S_{min}=-4\)
\(x^2+y^2=1+xy\Rightarrow x^2+y^2-xy=1\)
Ta có: \(1+xy=x^2+y^2\ge2xy\Rightarrow xy\le1\)
\(1+xy=x^2+y^2\ge-2xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(P=\left(x^2+y^2\right)^2-x^2y^2-2x^2y^2=\left(x^2+y^2-xy\right)\left(x^2+y^2+xy\right)-2x^2y^2\)
\(=x^2+y^2+xy-2x^2y^2=-2x^2y^2+2xy+1\)
Đặt \(a=xy\Rightarrow P=f\left(a\right)=-2a^2+2a+1\)
Xét hàm \(f\left(a\right)=-2a^2+2a+1\) trên \(\left[-\dfrac{1}{3};1\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[-\dfrac{1}{3};1\right]\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow M=\dfrac{3}{2}\) ; \(m=\dfrac{1}{9}\) \(\Rightarrow Mm=\dfrac{1}{6}\)
Bạn tham khảo nhé!
Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath
Áp dụng BĐT cói cho 2 số ko âm ta có
X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12
Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y
( thông cảm mình gõ mũ ko đc )
Ta có :
0 ≤ x - y 2 ⇔ 0 ≤ x 2 - 2 x y + y 2 ⇔ 2 x y ≤ x 2 + y 2 ⇔ x 2 + y 2 + 2 x y ≤ x 2 + y 2 + x 2 + y 2 ⇔ x + y 2 ≤ 2 x 2 + y 2 ⇔ x + y 2 ≤ 2 ⇔ - 2 ≤ x + y ≤ 2
Do đó - 2 ≤ S ≤ 2 .
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)=2\)
\(\Rightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(S_{min}=-\sqrt{2}\)