Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{a}{a+\sqrt{2018a+bc}}+\dfrac{b}{b+\sqrt{2018b+ca}}+\dfrac{c}{c+\sqrt{2018c+ab}}\)
\(=\dfrac{a}{a+\sqrt{a.\left(a+b+c\right)+bc}}+\dfrac{b}{b+\sqrt{b.\left(a+b+c\right)+ca}}+\dfrac{c}{c+\sqrt{c.\left(a+b+c\right)+ab}}\)
\(=\dfrac{a}{a+\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{b+\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{c+\sqrt{c^2+ab+bc+ca}}\)
\(=\dfrac{a\left(\sqrt{a^2+ab+bc+ca}-a\right)}{ab+bc+ca}+\dfrac{b\left(\sqrt{b^2+ab+bc+ca}-b\right)}{ab+bc+ca}+\dfrac{c\left(\sqrt{c^2+ab+bc+ca}-c\right)}{ab+bc+ca}\)
\(=\dfrac{a\left(\sqrt{\left(a+b\right)\left(a+c\right)}-a\right)}{ab+bc+ca}+\dfrac{b\left(\sqrt{\left(b+c\right)\left(b+a\right)}-b\right)}{ab+bc+ca}+\dfrac{c\left(\sqrt{\left(c+a\right)\left(c+b\right)}-c\right)}{ab+bc+ca}\)
\(\le\dfrac{a\left(\dfrac{2a+b+c}{2}-a\right)}{ab+bc+ca}+\dfrac{b\left(\dfrac{2b+c+a}{2}-b\right)}{ab+bc+ca}+\dfrac{c\left(\dfrac{2c+b+a}{2}-c\right)}{ab+bc+ca}\)
\(=\dfrac{ab+ac}{2\left(ab+bc+ca\right)}+\dfrac{bc+ba}{2\left(ab+bc+ca\right)}+\dfrac{ca+cb}{2\left(ab+bc+ca\right)}\)
\(=\dfrac{2\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=1\)
\(maxP=1\Leftrightarrow a=b=c=\dfrac{2018}{3}\)
\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
Tương tự: \(\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\) ; \(\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)\)
Cộng vế với vế:
\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho a, b, c, d là các chữ số thỏa mãn: ab+ca=da ab-ca=a Tìm giá trị của d.
Thỏa mãn $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ hay $a+b+c=1$ vậy bạn?
Lời giải:
Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)
\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)
CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)
Lời giải:
Đổi \((\sqrt{a}, \sqrt{b}, \sqrt{c})=(x,y,z)\) thì bài toán trở thành
Cho $x,y,z$ thực dương phân biệt tm: $\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$
CMR: $xyz=1$
-----------------------------
Có:
$\frac{xy+1}{x}=\frac{yz+1}{y}=\frac{xz+1}{z}$
$\Leftrightarrow y+\frac{1}{x}=z+\frac{1}{y}=x+\frac{1}{z}$
\(\Rightarrow \left\{\begin{matrix} y-z=\frac{x-y}{xy}\\ z-x=\frac{y-z}{yz}\\ x-y=\frac{z-x}{xz}\end{matrix}\right.\)
\(\Rightarrow (y-z)(z-x)(x-y)=\frac{(x-y)(y-z)(z-x)}{x^2y^2z^2}\)
Mà $x,y,z$ đôi một phân biệt nên $(x-y)(y-z)(z-x)\neq 0$
$\Rightarrow 1=\frac{1}{x^2y^2z^2}$
$\Rightarrow x^2y^2z^2=1$
$\Rightarrow xyz=1$ (do $xyz>0$)
Ta có đpcm.
Ap dung BDT Cauchy-Schwarz ta co:
\(\dfrac{a}{a+\sqrt{2018a+bc}}=\dfrac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}\)
\(=\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\ge\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tuong tu cho 2 BDT con lai roi cong theo ve:
\(P\ge\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
có thể tìm GTLN dc k