Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{a}{a+\sqrt{2018a+bc}}+\dfrac{b}{b+\sqrt{2018b+ca}}+\dfrac{c}{c+\sqrt{2018c+ab}}\)
\(=\dfrac{a}{a+\sqrt{a.\left(a+b+c\right)+bc}}+\dfrac{b}{b+\sqrt{b.\left(a+b+c\right)+ca}}+\dfrac{c}{c+\sqrt{c.\left(a+b+c\right)+ab}}\)
\(=\dfrac{a}{a+\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{b+\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{c+\sqrt{c^2+ab+bc+ca}}\)
\(=\dfrac{a\left(\sqrt{a^2+ab+bc+ca}-a\right)}{ab+bc+ca}+\dfrac{b\left(\sqrt{b^2+ab+bc+ca}-b\right)}{ab+bc+ca}+\dfrac{c\left(\sqrt{c^2+ab+bc+ca}-c\right)}{ab+bc+ca}\)
\(=\dfrac{a\left(\sqrt{\left(a+b\right)\left(a+c\right)}-a\right)}{ab+bc+ca}+\dfrac{b\left(\sqrt{\left(b+c\right)\left(b+a\right)}-b\right)}{ab+bc+ca}+\dfrac{c\left(\sqrt{\left(c+a\right)\left(c+b\right)}-c\right)}{ab+bc+ca}\)
\(\le\dfrac{a\left(\dfrac{2a+b+c}{2}-a\right)}{ab+bc+ca}+\dfrac{b\left(\dfrac{2b+c+a}{2}-b\right)}{ab+bc+ca}+\dfrac{c\left(\dfrac{2c+b+a}{2}-c\right)}{ab+bc+ca}\)
\(=\dfrac{ab+ac}{2\left(ab+bc+ca\right)}+\dfrac{bc+ba}{2\left(ab+bc+ca\right)}+\dfrac{ca+cb}{2\left(ab+bc+ca\right)}\)
\(=\dfrac{2\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=1\)
\(maxP=1\Leftrightarrow a=b=c=\dfrac{2018}{3}\)
Ap dung BDT Cauchy-Schwarz ta co:
\(\dfrac{a}{a+\sqrt{2018a+bc}}=\dfrac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}\)
\(=\dfrac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\ge\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tuong tu cho 2 BDT con lai roi cong theo ve:
\(P\ge\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
\(a^2-ab+b^2=\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow P\le\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT AM-GM:
\(P=\frac{2a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\\ =\frac{2a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
\(\leq \frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{4(b+c)}+\frac{b}{b+a}+\frac{c}{4(c+b)}+\frac{c}{c+a}\)
\(=(\frac{a}{a+b}+\frac{b}{b+a})+(\frac{a}{a+c}+\frac{c}{a+c})+\frac{1}{4}(\frac{b}{b+c}+\frac{c}{b+c})=1+1+\frac{1}{4}=\frac{9}{4}\)
Vậy $P_{\max}=\frac{9}{4}$
Lời giải:
Áp dụng BĐT AM-GM:
\(P=\sum \sqrt{\frac{ab}{c+ab}}=\sum \sqrt{\frac{ab}{c(a+b+c)+ab}}=\sum \sqrt{\frac{ab}{(c+a)(c+b)}}\)
\(\leq \sum \frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)=\frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy $P_{\max}=\frac{3}{2}$ khi $a=b=c=\frac{1}{3}$
Ta có: \(P=\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
\(=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}+\dfrac{ca}{\sqrt{\left(a+b+c\right)b+ca}}+\dfrac{ab}{\sqrt{\left(a+b+c\right)+ab}}\)\(=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}+\dfrac{ca}{\sqrt{ab+b^2+bc+ca}}+\dfrac{ab}{\sqrt{c^2+ac+ab+bc}}\)\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{ca}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\)\(\le\dfrac{1}{2}\left(\dfrac{b^2}{a+b}+\dfrac{c^2}{a+c}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+b}+\dfrac{a^2}{a+c}+\dfrac{b^2}{b+c}\right)\)
(Theo BĐT cauchy với \(a,b,c>0\) )
\(\le\dfrac{1}{2}\left(\dfrac{\left(2a+2b+2c\right)^2}{4\left(a+b+c\right)}\right)=\dfrac{1}{2}.\left(\dfrac{6^2}{4.3}\right)=\dfrac{3}{2}\)
(theo BĐT cauchy schwarz)
Vậy Max P =\(\dfrac{3}{2}\Leftrightarrow a=b=c=1\)
\(\dfrac{ab}{\sqrt{ab+2c}}=\dfrac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=ab\cdot\sqrt{\dfrac{1}{a+b}\cdot\dfrac{1}{b+c}}\le ab\cdot\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)=\dfrac{1}{2}\left(\dfrac{ab}{a+b}+\dfrac{ab}{b+c}\right)\)
CMTT: \(\dfrac{bc}{\sqrt{bc+2a}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{\sqrt{ac+2b}}\le\dfrac{1}{2}\left(\dfrac{ac}{b+c}+\dfrac{ac}{b+a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{ab}{c+a}+\dfrac{ab}{c+b}+\dfrac{bc}{b+a}+\dfrac{bc}{c+a}+\dfrac{ac}{b+c}+\dfrac{ac}{b+c}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left[\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right]=\dfrac{1}{2}\left(a+b+c\right)=1\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{2}{3}\)