Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em nghĩ đề là a chứ không phải 2a ;v
\(P=\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\\ =\dfrac{a}{\sqrt{ab+bc+ac+a^2}}+\dfrac{b}{\sqrt{ab+bc+ac+b^2}}+\dfrac{c}{\sqrt{ab+bc+ac+c^2}}\\ =\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\\ \le\left(\dfrac{a}{2\left(a+b\right)}+\dfrac{a}{2\left(a+c\right)}\right)+\left(\dfrac{b}{2\left(a+b\right)}+\dfrac{b}{2\left(b+c\right)}\right)+\left(\dfrac{c}{2\left(a+c\right)}+\dfrac{c}{2\left(b+c\right)}\right)\)
\(=\dfrac{2\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{4}\)
Áp dụng bđt : \(\dfrac{1}{xy}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}\)
Dấu "=" xảy ra khi a=b=c=1/căn 3
Dự đoán điểm rơi b=c=ka. Ta có:
\(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Áp dụng BĐT AM-GM: \(\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{a+b}+\dfrac{a}{a+c}\)
\(\dfrac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}=\dfrac{b.\sqrt{\dfrac{2k}{k+1}}}{\sqrt{\left(b+c\right).\dfrac{2k\left(a+b\right)}{k+1}}}\le\dfrac{b}{2}\sqrt{\dfrac{2k}{k+1}}.\left(\dfrac{1}{b+c}+\dfrac{\left(k+1\right)}{2k\left(a+b\right)}\right)\)
\(\dfrac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\dfrac{c}{2}.\sqrt{\dfrac{2k}{k+1}}\left(\dfrac{1}{b+c}+\dfrac{k+1}{2k\left(a+c\right)}\right)\)
\(\Rightarrow VT\le\dfrac{a}{a+b}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{b}{a+b}+\dfrac{a}{a+c}+\sqrt{\dfrac{k+1}{8k}}.\dfrac{c}{a+c}+\sqrt{\dfrac{k}{2k+2}}\)
Tìm k sao cho \(\sqrt{\dfrac{k+1}{8k}}=1\Rightarrow k=\dfrac{1}{7}\)
Do đó trình bày lại bài toán ngắn gọn như sau:
Áp dụng BĐT AM-GM:
\(VT=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{2b}{\sqrt{4\left(b+c\right).\left(b+a\right)}}+\dfrac{2c}{\sqrt{4\left(b+c\right).\left(a+b\right)}}\)
\(\le\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{4\left(b+c\right)}+\dfrac{b}{a+b}+\dfrac{c}{4\left(b+c\right)}+\dfrac{c}{a+c}\)
\(=1+1+\dfrac{1}{4}=\dfrac{9}{4}\)
Dấu = xảy ra khi \(a=7b=7c=\dfrac{7}{\sqrt{15}}\)
bai nay t lam roi vao trang chu cua nick thangbnsh cua t keo xuong tim la thay
Câu hỏi của Tuyển Trần Thị - Toán lớp 9 | Học trực tuyến
Lời giải:
Áp dụng BĐT AM-GM:
\(P=\frac{2a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\\ =\frac{2a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)
\(\leq \frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{4(b+c)}+\frac{b}{b+a}+\frac{c}{4(c+b)}+\frac{c}{c+a}\)
\(=(\frac{a}{a+b}+\frac{b}{b+a})+(\frac{a}{a+c}+\frac{c}{a+c})+\frac{1}{4}(\frac{b}{b+c}+\frac{c}{b+c})=1+1+\frac{1}{4}=\frac{9}{4}\)
Vậy $P_{\max}=\frac{9}{4}$
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\end{matrix}\right.\)\(\Rightarrow x+y+z=xyz\)
\(\Rightarrow P=xy+yz+xz-\sqrt{x^2+1}-\sqrt{y^2+1}-\sqrt{z^2+1}\)
Khi \(a=b=c=\frac{1}{\sqrt{3}}\Rightarrow x=y=z=\sqrt{3}\Rightarrow P=3\)
Ta sẽ chứng minh \(P=3\) là giá tri nhỏ nhất của \(P\)
\(\Rightarrow BDT\Leftrightarrow xy+yz+xz-3\ge\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\)
Ta có BĐT \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2y^2z^2\)
\(\Leftrightarrow\left(xy+yz+xz\right)^2\ge x^2y^2z^2+2xyz\left(x+y+z\right)\)\(=3\left(x+y+z\right)^2\)
Xét \(VT^2=\left(xy+yz+xz-3\right)^2=\left(xy+yz+xz\right)^2-6\left(xy+yz+xz\right)+9\)
\(\ge3\left(x+y+z\right)^2-6\left(xy+yz+xz\right)+9\)\(=3\left(x^2+y^2+z^2\right)+9\left(1\right)\)
Và \(VP^2\le\left(1+1+1\right)\left(x^2+y^2+z^2+3\right)=3\left(x^2+y^2+z^2\right)+9\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM. Vậy \(P_{min}=3\Rightarrow a=b=c=\frac{1}{\sqrt{3}}\)
\(Q=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{a+c}.\dfrac{c}{2\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{a+c}+\dfrac{c}{2\left(b+c\right)}\right)\)
\(=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\)
\(a^2-ab+b^2=\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}\left(a-b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow P\le\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)