K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vậy giá trị của PP22 trong trường hợp có nghiệm a=1a = 1, b=1b = 1, c=0c = 0.

17 tháng 7 2021

\(\)\(=>a^5+b^5+c^5-3\ge0\)

\(< =>a^5+b^5+c^5-\left(a^3+b^3+c^3\right)\ge0\)

\(>=>a^2.a^3-a^3+b^2.b^3-b^3+c^2.c^3-c^3\ge0\)

\(< =>a^2\left(a^3-1\right)+b^2\left(b^3-1\right)+c^2\left(c^3-1\right)\ge0\)(luôn đúng)

vì \(a^2\left(a^3-1\right)\ge0;b^2\left(b^3-1\right)\ge0;c^2\left(c^3-1\right)\ge0\)

Vậy \(Vt\ge3\)(đpcm)

 

\(\)

\(\)

17 tháng 7 2021

Sửa đề: \(a^3+b^3+c^3=3\) 

3 tháng 6 2020

\(\text{ Nếu: a}< 1\text{ thì: }b+c=5-a;b^2+c^2=\left(3-a\right)\left(3+a\right)\)

\(\text{ta có:}9-a^2\ge\left(25-10a+a^2\right):2\Leftrightarrow18-2a^2\ge25-10a+a^2\)

\(\Leftrightarrow10a-7-3a^2\ge0\Leftrightarrow-3a^2+3a+7a-7=-3a\left(a-1\right)+7\left(a-1\right)=\left(7-3a\right)\left(a-1\right)\ge0\)

do đó: a >=1

8 tháng 9 2018

Ta có: \(\frac{a}{2-a}\ge\frac{18a}{25}-\frac{1}{25}\Leftrightarrow25a\ge\left(18a-1\right)\left(2-a\right)\)
\(\Leftrightarrow-18a^2+37a-2-25a\le0\Leftrightarrow2\left(a-\frac{1}{3}\right)^2\ge0\)
Chứng minh tương tự rồi cộng lại ta được:
\(\frac{a}{2-a}+\frac{b}{2-b}+\frac{c}{2-c}\ge\frac{18}{25}\left(a+b+c\right)-\frac{3}{25}=\frac{3}{5}\)
Ta có đpcm
Dấu "=" xảy ra khi a=b=c=1/3

1 tháng 1 2016

Làm được bài này chưa. @@@

1 tháng 1 2016

Chưa, cậu làm được chưa?

6 tháng 8 2019

BĐT \(\Leftrightarrow6\left(a^3+b^3+c^3\right)+\left(a+b+c\right)^3\ge5\left(a^2+b^2+c^2\right)\left(a+b+c\right)\) (do a + b + c = 1)

\(\Leftrightarrow2\left[a^3+b^3+c^3+3abc-\left(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right)\right]\ge0\)

Luôn đúng theo bđt Schur bậc 3 nên ta có đpcm.

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left\{\left(\frac{1}{3};\frac{1}{3};\frac{1}{3}\right);\left(\frac{1}{2};\frac{1}{2};0\right);\left(\frac{1}{2};0;\frac{1}{2}\right);\left(0;\frac{1}{2};\frac{1}{2}\right)\right\}\)

Cách này mà sai thì em chịu luôn!