Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Lời giải:
$a+b=c+d$
$(a+b)^2=(c+d)^2\Rightarrow a^2+b^2+2ab=c^2+d^2+2cd$
$\Rightarrow ab=cd\Rightarrow \frac{a}{d}=\frac{c}{b}$.
Đặt $\frac{a}{d}=\frac{c}{b}=k$
$\Rightarrow a=dk; c=bk$. Khi đó:
$a+b=c+d$
$\Leftrightarrow dk+b=bk+d$
$\Leftrightarrow k(d-b)=d-b$
$\Leftrightarrow (d-b)(k-1)=0$
$\Rightarrow d=b$ hoặc $k=1$.
Nếu $b=d$ thì do $ab=cd\Rightarrow a=c$.
$\Rightarrow b^{2013}=d^{2013}; a^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nếu $k=1\Rightarrow a=d; b=c$
$\Rightarrow a^{2013}=d^{2013}; b^{2013}=c^{2013}$
$\Rightarrow a^{2013}+b^{2013}=c^{2013}+d^{2013}$
Nhân ra được a2+b2+c2=2ab+2ac+2bc
=>(a+b+c)^2=4ab+4ac+4bc
=>36=4M
=>M=9
a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( a - c )2
=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc - c2 + a2 - 2ac +c2
=> a2 + b2 + c2 = 2ab + 2bc + 2ac
Có : a + b + c = 6
=> ( a + b + c )2 = 62
=> a2 + b2 + c2 + 2ab + 2bc + 2ac = 36
Mà a2 + b2 + c2 = 2ab + 2bc + 2ac
=> 2ab + 2ac + 2bc + 2ab + 2ac + 2bc = 36
=> 4ab + 4ac + 4bc = 36
=> ab + ac + bc = 9
Mà M = ab + ac + bc
Vậy M = 9