K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

Đáp án C

Phương pháp giải:

Chọn hệ số a, b, c hoặc đánh giá tích để biện luận số nghiệm của phương trình

Lời giải:

Cách 1. Ta có: 

Lại có  có 3 nghiệm thuộc khoảng 

Cách 2. Chọn  và đồ thị hàm số cắt trục Ox tại 3 điểm phân biệt

25 tháng 6 2018

Đáp án C.

lim x → - ∞ y = - ∞   ( 1 ) f ( - 1 ) = - 1 + a 2 - b + c > 0   ( 2 ) f ( 2 ) = 8 + 4 a 2 + 2 a + c < 0   ( 3 ) lim x → - ∞ y = + ∞   ( 4 )

Từ (1) và (2) ⇒  Phương trình f (x) = 0 có ít nhất một nghiệm trên - ∞ ; - 1 .

Từ (2) và (3)  ⇒  Phương trình f (x) = 0 có ít nhất một nghiệm trên - 1 ; 2 .

Từ (3) và (4)  ⇒  Phương trình f (x) = 0 có ít nhất một nghiệm trên 2 ; + ∞ .

Do f (x) =0 là phương trình bậc 3 ⇒  Có nhiều nhất 3 nghiệm

⇒  Đường thẳng cắt trục Ox tại 3 điểm phân biệt.

9 tháng 6 2018

Đáp án D. 

Đồ thị hàm số cắt trục hoành tại 3 điểm.

6 tháng 7 2017

Đáp án là D

11 tháng 6 2017

Đáp án B

Phương pháp giải:

Dựa vào đồ thị hàm số xác định hoành độ điểm D suy ra tung độ điểm A chính là độ dài BC

Lời giải: Gọi  với 

Gọi  thuộc đồ thị 

Vì ABCDlà hình chữ nhật

Khi đó BC = m. Mà  

9 tháng 8 2019

Chọn đáp án D.

10 tháng 11 2017

29 tháng 12 2019

Đáp án D

Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox

Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0

Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có

31 tháng 12 2019

Đáp án B.

Phương trình hoành độ giao điểm của (C) và d : x − 2 x − 1 = − x + m  

⇔ x ≠ 1 x − 2 = ( − x + m ) ( x − 1 ) ⇔ x ≠ 1 f ( x ) = x 2 − m x + m − 2 = 0 ( * )  

Để (C) và d cắt nhau tại hai điểm phân biệt A, B khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x 1 , x 2  khác 1

⇔ f ( 1 ) = 1 2 − m + m − 2 ≠ 0 Δ = - m 2 − 4 ( m − 2 ) > 0 ⇔ − 1 ≠ 0 m 2 − 4 m + 8 m > 0 ⇔ m ∈ ℝ .

Mặt khác OAB là tam giác nên  O ∈ d  hay m ≠ 0  .

Gọi A ( x 1 ; − x 1 + m )  và B ( x 2 ; − x 2 + m )  . Suy ra O A = 2 x 1 2 − 2 m x 1 + m 2 O B = 2 x 2 2 − 2 m x 2 + m 2  

Do x 1 , x 2  là hai nghiệm của phương trình (*) nên x 1 2 − m x 1 = 2 − m x 2 2 − m x 2 = 2 − m  

Khi đó   O A = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4 O B = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4

Từ giả thiết ta có :

2 m 2 − 2 m + 4 = 1 ⇔ m 2 − 2 m + 4 = 2 ⇔ m ( m − 2 ) = 0 ⇔ m = 0 m = 2

Đối chiếu với điều kiện ta được m=2 thỏa mãn.

26 tháng 7 2018

Đáp án A