Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ câu a) ta có: \(\orbr{\begin{cases}x=y+1\\x=y-1\end{cases}}\) và \(\hept{\begin{cases}x-y=t-z\\y=t\end{cases}}\) (3)
+) Với \(x=y+1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y+1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z+1\\y=t\end{cases}}\)
\(\Rightarrow\)\(x=y+1=z+2\) ( x,y,z là 3 số nguyên liên tiếp )
+) Với \(x=y-1\) thì (3) \(\Leftrightarrow\)\(\hept{\begin{cases}y-1-y=y-z\\y=t\end{cases}}\Leftrightarrow\hept{\begin{cases}y=z-1\\y=t\end{cases}}\)
\(\Rightarrow\)\(x=y-1=z-2\) ( x,y,z là 3 số nguyên liên tiếp )
\(x+z=y+t\)\(\Leftrightarrow\)\(x^2+z^2+2xz=y^2+t^2+2yt\) (1)
Mà \(xz+1=yt\)\(\Leftrightarrow\)\(2xz+2=2yt\)
(1) \(\Leftrightarrow\)\(x^2+z^2+2yt=y^2+t^2+2xz+4\)
\(\Leftrightarrow\)\(\left(x-z\right)^2-\left(y-t\right)^2=4\)
\(\Leftrightarrow\)\(\left(x-z-y+t\right)\left(x-z+y-t\right)=4\) (2)
Lại có: \(x+z=y+t\)\(\Rightarrow\)\(\hept{\begin{cases}x-y=t-z\\x-t=y-z\end{cases}}\)
(2) \(\Leftrightarrow\)\(\left(x-y\right)\left(x-t\right)=1\)
TH1: \(\hept{\begin{cases}x-y=1\\x-t=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y+1\\x=t+1\end{cases}}\Leftrightarrow y=t\)
TH2: \(\hept{\begin{cases}x-y=-1\\x-t=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y-1\\x=t-1\end{cases}}\Leftrightarrow y=t\)
Lời giải:
Đặt $x+y=a; y+z=b; z+x=c$ thì $x=\frac{a+c-b}{2}; y=\frac{a+b-c}{2}; z=\frac{b+c-a}{2}$ (ĐK: $a,b,c>0$)
Khi đó:
$\frac{x+3z}{x+y}+\frac{z+3x}{y+z}+\frac{4y}{z+x}=\frac{c+b+c-a}{a}+\frac{c+a+c-b}{b}+\frac{2(a+b-c)}{c}$
$=\frac{2c+b}{a}+\frac{2c+a}{b}+\frac{2a+2b}{c}-4$
$=(\frac{2c}{a}+\frac{2a}{c})+(\frac{b}{a}+\frac{a}{b})+(\frac{2c}{b}+\frac{2b}{c})-4$
$\geq 2\sqrt{\frac{2c}{a}.\frac{2a}{c}}+2\sqrt{\frac{b}{a}.\frac{a}{b}}+2\sqrt{\frac{2c}{b}.\frac{2b}{c}}-4$ (theo BĐT AM-GM)
$=2\sqrt{4}+2\sqrt{1}+2\sqrt{4}-4=6$ (đpcm)
Đặt \(\dfrac{x}{z}=a;\dfrac{y}{z}=b\).
Theo gt ta có \(a+b\le1\).
BĐT cần chứng minh tương đương:
\(a^2+b^2+\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge \frac{21}{2}\).
Theo bđt AM - GM: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge2;a^2+\dfrac{1}{16}a^2\ge\dfrac{1}{2};b^2+\dfrac{1}{16}b^2\ge\dfrac{1}{2};\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge\dfrac{15}{2}\).
Cộng vế với vế của các bđt trên lại ta có đpcm.
Áp dụng bđt AM-GM ta có :
\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\) (do x+y+z=2)
Vậy ....
Áp dụng bđt Cô-si vào các số x,y,z dương:
\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{y+z}\cdot\dfrac{y+z}{4}}=x\)
Chứng minh tương tự :\(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\) , \(\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\)
\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{1}{2}\left(x+y+z\right)\ge x+y+z\)
\(\Rightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{1}{2}\left(x+y+z\right)=1\)
Dấu bằng xảy ra của cả 2 cách là x=y=z=\(\dfrac{2}{3}\)
Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!
+) Với các số nguyên dương x, y,z ta có \(\frac{x}{x+y}>\frac{x}{x+y+z}\)
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)
Cộng từng vế của các bđt trên ta được \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)(*)
+) ta dễ dàng chứng minh được điều sau: Cho x,y, z dương. Nếu \(\frac{x}{y}
\(\rightarrow\)Ta có: \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\) \(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)
\(\rightarrow\)Tương tự như trên, ta có đẳng thức: \(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>\frac{y}{x+y+z}+\frac{z}{y+z+x}+\frac{x}{z+x+y}=\frac{y+z+x}{y+z+x}=1\)
Mà \(\left(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\right)+\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)=3\)
Kết hợp các Bất đẳng thức trên, ta có điều phải chứng minh.