K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

x^2+x+y^2+y+z^2+z<=18 suy ra (x+y+z)^2/3+x+y+z<=18

Đặt x+y+z=t thì t^2/3+t-18<=0 suy ra t^2+3t-54<=0>>>(t+9)(t-6)<=0>>>t-<=0>>>t<=6

P>=(1+1+1)^2/2x+2y+2z+3(BĐT Cauchuy-Swartch)=9/2(x+y+z)+3>=9/2.6+3=9/15=3/5

Dấu = khi x=y=z=2(tính dấu = của BĐT Cauchuy-Swartch nhé)

giống cách mình,mà đó là schwarts mà Hoàng Minh Hoàng

27 tháng 12 2016

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\\ \)

\(\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}\) tương tự với y,z

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

=> ta đi tìm GTNN của (..)\(A=\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

đặt x+1=a;y+1=b;z+1=c nội suy cho đỡ đau đầu a+b+c=4

\(B=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) 

\(a+b+c\ge3\sqrt[3]{abc}\)(*)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\)(*)

(*).(**)\(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{\left(a+b+c\right)}\)

\(\Rightarrow B\ge\frac{9}{4}\Rightarrow A\ge\frac{9}{4}\Rightarrow P\le3-\frac{9}{4}=\frac{3}{4}\)

DS: \(P_{max}=\frac{3}{4}\) đẳng thức khi a=b=c=> x=y=z=1/3

21 tháng 8 2017

hay was

NV
10 tháng 10 2020

\(18\ge x^2+y^2+z^2+x+y+z\ge\frac{1}{3}\left(x+y+z\right)^2+x+y+z\)

\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-54\le0\)

\(\Leftrightarrow\left(x+y+z+9\right)\left(x+y+z-6\right)\le0\)

\(\Leftrightarrow x+y+z-6\le0\)

\(\Leftrightarrow x+y+z\le6\)

Do đó:

\(P\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{2.6+3}=\frac{3}{5}\)

Dấu "=" xảy ra khi \(x=y=z=2\)

Tham khảo link này nha

https://olm.vn/hoi-dap/detail/243232541423.htm

29 tháng 12 2019

Violympic toán 9

22 tháng 8 2019

\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}=x\left(1-\frac{y^2}{1+y^2}\right)+y\left(1-\frac{z^2}{1+z^2}\right)+z\left(1-\frac{x^2}{1+x^2}\right)\)

\(\Rightarrow A\ge x\left(1-\frac{y}{2}\right)+y\left(1-\frac{z}{2}\right)+z\left(1-\frac{x}{2}\right)=\left(x+y+z\right)-\frac{xy+yz+zx}{2}\ge3-\frac{\frac{9}{3}}{2}=\frac{3}{2}\)

Dau '=' xay ra khi \(x=y=z=1\)

Vay \(A_{min}=\frac{3}{2}\)khi \(x=y=z=1\)