Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a và 1 là 2 số dương \(\Rightarrow a+1\ge2\sqrt{a}\) (bđt AM - GM)
Vì b và 1 là 2 số dương \(\Rightarrow b+1\ge2\sqrt{b}\)(bđt AM - GM)
Vì c và 1 là 2 số dương \(\Rightarrow c+1\ge2\sqrt{c}\)(bđt AM - GM)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\) (đpcm)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=abc+ac+bc+ab+a+b+c+1\)
Áp dụng BĐT thức Cô si cho 3 số , ta có:
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\)
\(\Rightarrow ab+bc+ca+a+b+c+2\ge3+3+2=8\left(đpcm\right)\)
AM-GM 1 dòng thôi bạn :))
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8\sqrt{abc}=8\)
Dấu "=" khi a=b=c=1
Áp dụng BĐT AM - GM cho các số không âm , ta có :
\(\left\{{}\begin{matrix}a+1\ge2\sqrt{a}\\b+1\ge2\sqrt{b}\\c+1\ge2\sqrt{c}\end{matrix}\right.\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2.2.2.\sqrt{abc}\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\left(đpcm\right)\)
Áp dụng bất đẳng thức Cauchy cho từng cặp số không âm (với \(a,b,c>0\)), ta có:
\(a^2+1\ge2a\) \(\left(1\right)\)
\(b^2+1\ge2b\) \(\left(2\right)\)
\(c^2+1\ge2c\) \(\left(3\right)\)
Nhân từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc=8\) (do \(abc=1\))
Xảy ra đẳng thức trên khi và chỉ khi \(a=b=c=1\)
Nhân tung tóe + rút gọn ta được: \(\Sigma_{cyc}a^3b^2+\Sigma_{cyc}ab^3\ge abc\left(ab+bc+ca+a+b+c\right)\)
\(\Leftrightarrow\)\(\Sigma\frac{a^2b}{c}+\Sigma\frac{a^2}{b}\ge ab+bc+ca+a+b+c\) (*)
(*) đúng do \(\hept{\begin{cases}\frac{a^2b}{c}+bc\ge2ab\\\frac{a^2}{b}+b\ge2a\end{cases}}\Rightarrow\hept{\begin{cases}\Sigma\frac{a^2b}{c}\ge ab+bc+ca\\\Sigma\frac{a^2}{b}\ge a+b+c\end{cases}}\)
"=" \(\Leftrightarrow\)\(a=b=c\)
Bài này đã có ở đây:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24
Ta có:\(\left(a-1\right)^2\ge0\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a^2+2a+1\right)-4a\ge0\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)
TT\(\Rightarrow\left(b+1\right)^2\ge4b\)
\(\left(c+1\right)^2\ge4b\)
Nhân vế theo vế ta được \(\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2\ge64abc=64\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)(đpcm)
bn êi tích bằng 1 ko dùng ak